
SPSS分析技术:低测度数据的相关性分析
如果遇到低测度数据,需要判断它与低测度数据或高测度数据之间的相关性,需要根据数据类型以及数据组合之间的关系来决定分析方法,如下图所示:
今天,我们介绍低测度数据之间相关性分析技术---交叉表分析。低测度数据之间相关性分析在社会生活中经常遇到,例如,在社会调查中,户籍与生活习惯之间的关系,户籍与爱好之间的关系等,这些都属于低测度数据相关性分析的范畴。
交叉表分析
选择菜单【描述统计】-【交叉表格】;再选择【Statistics】,对话框如下图所示:
对于不同组合的低测度数据类型,用交叉表判断它们的相关性,要用到不同的统计量:
定类变量的分析;由于定类变量的测度比较低,而且其大小和顺序无实际意义。需要用到右图的“名义”区域内的“相关系数”、“Phi和Cramer V”、“Lambda”、“不确定性系数”。
定序变量的分析;由于定序变量的数值大小有顺序的意义,而且其测度水平通常高于定类变量。常见的分析方法位于“有序”区域内,依次为Gamma系数、Somers系数、Kendall的tau-b系数和Kendall的tau-c系数四类。
定类-定距变量的分析;对于定类变量和定距变量构成的分析对,可以使用Eta关联系数。另外,如果定距变量的测度较高,还可以根据定距变量是否符合正态分布,以定距变量作为因变量,以定类变量作为因素变量,进行方差分析或者多独立因素的非参数检验。对于在不同因素水平下,如果定距变量具有显著性差异,那么可以认为定类变量和定距变量之间具有显著相关性。
二分变量-二分变量;McNemar相关系数用于检验两个有关联的二分变量之间的相关性分析。
范例分析
现在有一份数据文件,记录 880 人参于的关于早餐喜好的民意调查结果,该调查记录了参与者的年龄、性别、婚姻状况、生活方式以及早餐选择。对不同年龄段与早餐选择进行相关性分析。如下图所示:
分析思路
从上图可知,已经对年龄进行分段,对早餐选择进行分类,新的年龄分段变量(agecat)和早餐分类变量(breakfast)属于定类变量,需要用“名义”区域内的系数表示它们之间的相关性。
操作步骤
1、选择菜单【分析】-【描述统计】-【交叉表格】;将年龄分段选为行变量,将首选早餐选为列变量;将【显示集群条形图】选中。
2、选择【Statistics】,将名义区域内的系数都选中。
3、点击【继续】,在点击【确定】,进入分析。
结果解读
表格显示了不同年龄段和不同早餐选择之间的频数分布,从表格中可以看到频数在不同年龄段和早餐选择之间的频数变化。直方图可以直观的观察不同年龄段对应不同早餐选择的变化,从图中可知发现,绿色条随着年龄段的增加而增加,蓝色条则相反,灰色条基本没有变化,这些都说明不同年龄段和早餐选择之间存在相关性,但是相关性的强弱到底如何还需要进一步的数据。
2、相关系数;
表格显示三个相关系数,都是通过卡方统计量修改而来。从结果来看,介于0.4~0.6之间,说明不同年龄段和早餐选择之间存在一定的相关性。
3、相依系数、lambda系数和不确定系数
lambda系数表示变量之间预测结果的好坏,数值介于0~1之间,从结果看,年龄段与早餐选择之间的预测结果比较差。
不确定系数是以熵为标准的比例缩减误差,表示一个变量的信息在多大程度上来源于另一个变量。1表示程度最高,0表示程度最低。从结果看,这个系数的值也不高。
最终结论
从相关分析的结果来看,不同年龄段的人对早餐的选择存在差异性,也就是说两个定类变量之间存在一定的相关性,从交叉表、直方图和相关系数可以得到这个结果。但是它们之间的相依程度不高,从lambda系数,不确定系数低于0.2可以知道,所以它们之间是不能在这些样本的基础上得到准确的回归方程的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15