京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:偏相关分析
相关分析是研究两个变量共同变化的密切程度,但有时出现相关的两个变量又同时与另外的一个变量相关,在这三个变量中,有可能只是由于某个变量充当了相关性的中介作用,而另外的两个变量并不存在实质性的相关关系。这种情形导致数据分析中出现“伪相关”现象,造成伪相关现象的变量被称为“桥梁变量”。
例如,在研究大学生上网时间,游戏时间、完成作业情况、考试成绩的相关性时,往往发现上网时间与作业情况、考试成绩呈现不明显的负相关性,同时上网时间又和游戏时间呈现高度正相关性,游戏时间与作业情况、考试成绩也呈现为负相关性。那么,上网时间与作业情况、考试成绩之间的微弱负相关性是真的吗?
在数据的相关性分析中,为了摒弃桥梁变量的影响力,发现变量内部隐藏的真正相关性,人们引入了偏相关分析的概念。偏相关分析是在剔除控制变量的影响下,分析指定变量之间是否存在显著的相关性。
偏相关分析
首先在验证了数据内部存在相关性后,如果怀疑可能存在桥梁变量,则可以把桥梁变量作为控制变量,重新进行相关性分析,检查在排除了桥梁变量的影响力之后,其它变量之间是否还存在关联性。如果开始有相关关系,剔除了控制变量之后,相关关系不存在了,说明控制变量为桥梁变量。
范例分析
现在采集到60条学生数据,分析上网时间、游戏时间、作业情况和数学成绩之间的相关性,并探索本案例中是否存在桥梁变量。数据如下:
SPSS分析步骤
1、选择菜单【分析】-【相关】-【双变量】命令,启动四个变量的相关性分析,操作如下图,将上网时间、游戏时间、作业情况和数学成绩选入变量区域内,进行分析。
2、分析者根据实际情况,怀疑游戏时间是桥梁变量,因为游戏时间的存在,导致另外三个变量之间存在着高度相关性。因此以游戏时间作为控制变量,进行偏相关分析。选择菜单【分析】-【相关】-【偏相关】命令,启动偏相关分析,将上网时间、作业情况和数学成绩选为变量,将游戏时间选为控制变量。
结果分析
双变量相关分析结果如下:
从上图结果可知,上网时间与游戏时间是正相关的(相关系数为1,概率为0.000);与作业情况和数学成绩是负相关的(相关系数为-0.957和-0.986,检验概率都为0),表示这四个变量之间都存在着显著相关性。
偏相关分析结果

从上图结果可知,当剔除游戏时间以后,上网时间与作业情况和数学成绩之间的相关系数都为0,显著性为1,大于0.05,说明它们之间不存在相关性。
结论
在本案例中,直接分析四个变量的相关性水平发现,上网时间与作业情况、数学成绩之间存在显著相关。然而,偏相关检验的结论说明,上网时间与作业情况,数学成绩的显著相关是由游戏时间引起的,游戏时间在上网时间、作业情况和数学成绩之间起到桥梁作用,它确实是一个桥梁变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06