
SPSS分析技术:偏相关分析
相关分析是研究两个变量共同变化的密切程度,但有时出现相关的两个变量又同时与另外的一个变量相关,在这三个变量中,有可能只是由于某个变量充当了相关性的中介作用,而另外的两个变量并不存在实质性的相关关系。这种情形导致数据分析中出现“伪相关”现象,造成伪相关现象的变量被称为“桥梁变量”。
例如,在研究大学生上网时间,游戏时间、完成作业情况、考试成绩的相关性时,往往发现上网时间与作业情况、考试成绩呈现不明显的负相关性,同时上网时间又和游戏时间呈现高度正相关性,游戏时间与作业情况、考试成绩也呈现为负相关性。那么,上网时间与作业情况、考试成绩之间的微弱负相关性是真的吗?
在数据的相关性分析中,为了摒弃桥梁变量的影响力,发现变量内部隐藏的真正相关性,人们引入了偏相关分析的概念。偏相关分析是在剔除控制变量的影响下,分析指定变量之间是否存在显著的相关性。
偏相关分析
首先在验证了数据内部存在相关性后,如果怀疑可能存在桥梁变量,则可以把桥梁变量作为控制变量,重新进行相关性分析,检查在排除了桥梁变量的影响力之后,其它变量之间是否还存在关联性。如果开始有相关关系,剔除了控制变量之后,相关关系不存在了,说明控制变量为桥梁变量。
范例分析
现在采集到60条学生数据,分析上网时间、游戏时间、作业情况和数学成绩之间的相关性,并探索本案例中是否存在桥梁变量。数据如下:
SPSS分析步骤
1、选择菜单【分析】-【相关】-【双变量】命令,启动四个变量的相关性分析,操作如下图,将上网时间、游戏时间、作业情况和数学成绩选入变量区域内,进行分析。
2、分析者根据实际情况,怀疑游戏时间是桥梁变量,因为游戏时间的存在,导致另外三个变量之间存在着高度相关性。因此以游戏时间作为控制变量,进行偏相关分析。选择菜单【分析】-【相关】-【偏相关】命令,启动偏相关分析,将上网时间、作业情况和数学成绩选为变量,将游戏时间选为控制变量。
结果分析
双变量相关分析结果如下:
从上图结果可知,上网时间与游戏时间是正相关的(相关系数为1,概率为0.000);与作业情况和数学成绩是负相关的(相关系数为-0.957和-0.986,检验概率都为0),表示这四个变量之间都存在着显著相关性。
偏相关分析结果
从上图结果可知,当剔除游戏时间以后,上网时间与作业情况和数学成绩之间的相关系数都为0,显著性为1,大于0.05,说明它们之间不存在相关性。
结论
在本案例中,直接分析四个变量的相关性水平发现,上网时间与作业情况、数学成绩之间存在显著相关。然而,偏相关检验的结论说明,上网时间与作业情况,数学成绩的显著相关是由游戏时间引起的,游戏时间在上网时间、作业情况和数学成绩之间起到桥梁作用,它确实是一个桥梁变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19