SPSS分析技术:线性回归分析 相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预 ...
2017-02-28SPSS应用之非参数检验 统计学的假设检验可以分为参数检验和非参数检验,参数检验是根据一些假设条件推算而来,当这些假设条件无法满足的时候,参数检验的效能会大打折扣,甚至出现错误的结果,而非参数检验通常 ...
2017-02-28R语言中的缺失值处理 在处理一些真实数据时,样本中往往会包含缺失值(Missing values)。我们需要对缺失值进行适宜的处理,才能建立更为有效的模型,使得后续预测分析能有更小的偏差。本文将罗列不同的缺失值处 ...
2017-02-27R语言不平衡数据分类指南 目前我们发展出了不少机器学习算法来对数据建模,基于数据进行一些预测已经不再是难事。不论我们建立的是回归或是分类模型,只要我们选择了合适的算法,总能得到比较精确的结果。然而 ...
2017-02-27使用R写入Excel方法总结 数据部门在和公司其他部门打交道过程中,将数据写入Excel文件经常会涉及到(从各种临时需求到日常数据报告Dashboard等等)。 通过Rdocumentation查询write to excel,会有15个R包、2 ...
2017-02-27SPSS分析技术:描述统计;了解手中的数据,从这里开始 无论是总体数据还是样本数据,描述统计都是了解它们的第一步,因为了解数据是进行进一步数据分析的基础。在统计基础文章中介绍过,描述数据可以从三个维度进 ...
2017-02-27SPSS统计分析案例:对应分析 两个分类变量间的关系,无法直接使用常见的皮尔逊相关系数来表述,多采用频数统计、交叉表卡方检验等过程进行处理,当分类变量的取值较多时,列联表频数的形式就变得更为复杂,很难 ...
2017-02-27SPSS常见函数及使用方法 SPSS函数是一个常用程序,并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。 通常,函数的格式为:函数名称(自变量,自变量 ...
2017-02-27R语言中离群值的识别、描述、绘制与移除 统计学中离群值被定义为离开大部分观测较远的样本点,多数是由于测量误差而产生。因此,数据分析中离群值的识别和移除(如有必要)是很重要的一个步骤。 鉴 ...
2017-02-26教你如何用R进行数据挖掘 R是一种广泛用于数据分析和统计计算的强大语言,于上世纪90年代开始发展起来。得益于全世界众多 爱好者的无尽努力,大家继而开发出了一种基于R但优于R基本文本编辑器的R Studio(用户 ...
2017-02-26使用R进行倾向得分匹配(PSM) 根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅 ...
2017-02-26PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性。同时,我也在做Google的SEO,推广自己的博客。经过几个月尝试,我的博客PR到2了,外链也有几万个了。总结下来, ...
2017-02-26R语言解读一元线性回归模型 R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长 ...
2017-02-26用R语言建立学生的学习表现和性格特征数据模型 一、项目介绍: 方法包括以下步骤 S1:将个体表现数据输入到数据库; S2:建立学习者的学习表现数据库和性格特征数据库; S3:建立学习者的学习表现 ...
2017-02-26用R语言作社群关系分析 在反映大量人群或事物之间的关系时,社交网络图可以清晰的展示’群体’的内含和外延。例如,群体的规模、核心、与其他群体的交叠情况。 社交关系图来表示应用人数和之间的交叠关系, ...
2017-02-25使用R原生函数来做文本挖掘 最近有几位同学问到我如何利用tm包做文本挖掘,比较抱歉的是时间不太充足,不能完整更新文档。 在这里只好给大家一些tips,来利用R的原生函数来完成文本挖掘的核心步骤。 set ...
2017-02-25简单的认识一下组合分类器以及R语言对应使用函数 首先,我们大家都有学习过一系列的分类方法,例如决策树,贝叶斯分类器等,有时候分类的效果不太如人意,哪怕是参数是最优化也一样,所以这时候就需要一些提高 ...
2017-02-25R语言数据预处理 一、日期时间、字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date(), difftime(), ISOdate(), ...
2017-02-25R语言相关分布函数、统计函数的使用 R语言相关分布函数、统计函数的使用 分布函数家族: *func() r : 随机分布函数 d : 概率密度函数 p : 累积分布函数 q : 分位数函数 func()表示具体的名称 ...
2017-02-25R语言统计与分布的相关知识 变量 变量按变量值是否连续可分为连续变量与离散变量两种。连续变量(continuous variable)与离散变量(discrete variable) 连续变量 在一定区间内可以任意取值的变量叫 ...
2017-02-25PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08