
简单的认识一下组合分类器以及R语言对应使用函数
首先,我们大家都有学习过一系列的分类方法,例如决策树,贝叶斯分类器等,有时候分类的效果不太如人意,哪怕是参数是最优化也一样,所以这时候就需要一些提高分类准确性的方法,我们常用的就是组合分类器,它就是一个复合模型,也就是由多个分类器组合而成;个体的分类器对结果进行投票,然后对组合分类器返回的投票进行汇总,然后基于返回的结果进行预测和分类。组合分类器的结果往往比它的成员分类器更准确;一般常用的组合分类方法有bigbing,boosting,还有我比较喜欢的随机森林; 什么是组合分类?
组合分类就是把K个学习得到的模型M1,M2,...,MK组合在一起,使用给定数据集D创建K个训练集D1,D2,...,DK,其中D1用于创建M1模型,以此类推;给定一个待分类的新数据元组,每个基分类器通过返回类预测投票,它收集由基于基分类器返回的类标预测,并输出占多数的类,基分类器也会出错,当基分类器出错时不代表组合分类器出错,组合分类器基于基本分类器的投票返回类预测,因此基分类器要出错超过一半时组合分类器才会出错,并且基分类器之间是不相关的,这也就是说明组合分类器更加准确。
bagging
这个方法也叫装袋法,这个也是组合分类器的一种,它的理念在与通过自举的方法建立很多不同的模型,然后对结果取平均,其本质是使得一些较弱的模型形成一个群体对结果来投票,从而得到更精确的预测;例如,如果你是一名病人希望根据你的症状做出诊断,你可能选择多个医生,而不是一个,如果某个诊断结果比其他诊断结果出现的次数多,你可能认为这个结果是最为可能出现的诊断结果,也即是说最终的诊断结果是根据多数表决做出的;其中每个医生的权重都一样,更多的医生表决比少数医生的多数表决更为的可靠;
在给定D个元组的集合,采用有放回抽样,每个训练集都是一个自助样本,每个训练集通过学习得到一个分类模型,对未知的元组进行分类,每个分类器M返回它的分类结果,算做一票,最后得票最高的作为结果类;对连续变量则通过取平均值;
那么在R语言里面怎么使用这个方法呢?
这时候我先要装好包ipred包中的bagging函数建立回归的bagging模型;
例如
bagging(price~x1+x2,data=test_date,nbagg=20)#这里只是举例代码并不能执行;
nbagg时选择多少个rpart数
boosting
这个方法也叫提升,它和上面的方法有些类似,假如你是一位病人,你选择咨询多位医生,然而得到的结果不是一致的,这时候你就需要根据先前医生诊断的准确率。对每一位医生赋予一个权重,然后根据加权诊断的组合作为最终的结果;这就是提升的基本思想;
早提升方法中,首先权重赋予每个训练元组,迭代的学习K个分类器;学习得到分类器M1之后,更新权重,使得其后的分类器M2更关注误分类的训练元组,如元组不准确的分类,则它的权重增加,如果元组正确分类,则它的权重减少;这是希望我们能够更加关注上一轮误分类的元组;其中每个分类器投票的权重是其准确率的函数;
bagging和boosting相比
由于boosting更加的关注误分的元组,所以存在结果符合模型的过度拟合的危险,bagging则不太受这个影响,不过二者都能够显著的提高准确度;boosting往往能够得到较高的准确率;
R语言里使用的是包mboost中的blackboost函数从回归树种建立boosting模型,glmboost从广义线性模型中建立模型;
blackboost(price~x1+x2,data=test_date)#这里只是举例代码并不能执行;
随机森林也是一种组合分类器,因为每一个分类器都是一棵树,所以组合在一起就很像一个森林;每一个数都依赖独立抽样;
随机森林可以使用bagging和随机属性来选择组合来构建,
A、指定M值,即随机产生M个属性用于节点上的二叉树,二叉树属性选择任然满足不纯度最小原则,不纯度公式为
B、应用BOOTSTRAP自助法在员数据集中有放回地随机抽取K个样本集,组成K颗决策树,而对于未被抽取的样本用于决策树的预测;
C、根据K个决策树组成的随机森林对待分类样本进行分类或者预测,分类的原则是投票法,预测的原则是简单平均。
想象组合分类器中每个分类器都是一颗决策树,因此分类器的集合就是一个“森林”,使用CART算法的方法来增长树,树增长到最大的规模,并且不剪枝,用这种方式形成的随机森林称为Forest-RI,数据分析师培训
另一种形式称为Forest-RC,他不是随机地选择一个属性子集,而是选择一个属性子集,而是由已有的属性的线性组合创建一些新属性,就是由原来的S个属性组合,在给定的节点,随机选择S个属性,并且以次欧诺个[-1,1]中随机选取的数为系数相加,产生S个线性组合,并在其中找到最佳的划分,仅仅只有少量属性可用时,为了降低个体分类器之间的相关性,这种形式的随机森林才有用。
随机森林的准确率可以boosting媲美,随机森林的泛化误差收敛,所以不存在过度拟合不是什么问题;
R语言最后给我们常用randomForest包中的randomForest函数去建模;
randomForest (price~x1+x2,data=test_date)#这里只是举例代码并不能执行;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15