
R语言相关分布函数、统计函数的使用
分布函数家族: *func()
r : 随机分布函数
d : 概率密度函数
p : 累积分布函数
q : 分位数函数
func()表示具体的名称如下表:
例子
#r : 随机分布函数
#d : 概率密度函数
#p : 累积分布函数
#q : 分位数函数
#生成符合二项分布的数据
# 二项分布
# X~(N,P)
str(rbinom)
x<-rbinom(5,1,0.5) #做1次试验,假设正面概率为0.5,进行5次观察,每1次试验中正面出现的次数为别为 0 0 1 1 0
x<-rbinom(5,10,0.5) #做10次试验,假设正面概率为0.5,进行5次观察,每10次试验中正面出现的次数分别为 4 4 7 6 6
x
plot(x)
#概率密度函数
y<-dbinom(40,100,0.5) #做100次试验,假设正面概率为0.5,正面出现的次数为50次的概率是 0.01084387
y<-dbinom(40:50,100,0.5) ##做100次试验,假设正面概率为0.5,正面出现的次数分别为40到50的概率分别为: 0.01084387...
sum(y) #累计概率
y<-dbinom(0:100,100,0.5)
plot(y) #概率密度曲线
plot(0:100,y,pch=16) #概率密度曲线
#累计概率
z<-pbinom(50,100,0.5) #累计概率 小于等于50的概率为0.5397946
z<-dbinom(0:50,100,0.5)
sum(z)
plot(pbinom(0:100,100,0.5))
#分为点
q = qbinom(0.5,100,0.5) #在0.5分为点的数值为
q
单变量统计函数
均值:mean
中位数:median
分位数:quantile
方差:var
标准差:sd
频数表:table
偏度: Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
<0 左偏 >0 右偏
峰度: Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
<3 坡度缓 >3 坡度陡
#单变量的描述统计
str(airquality) #R自带的空气质量数据集 str 结构structure的缩写
summary(airquality) #汇总数据包括 最小值、分位数、平均数、中位数、最大值、缺失值(NA's)
#平均值
mean(airquality$Ozone, na.rm = T) #na.rm=T 对缺失值进行删除,存在缺失值,结果为NA
mean(airquality$Temp, na.rm = T, trim = .01) #trim=.01 按百分比去掉头尾的数,删除极值
#中位数
median(airquality$Ozone, na.rm = T)
#加权平均数
temp100 <- rnorm(100,30,1) #通过正态分布生成100个随机数,平均值为30
w <- 1:100 #生成每个值的权重值
wmt = weighted.mean(temp100,w,na.rm = T) #进行加权平均计算
mt = mean(temp100,na.rm = T)
#几何平均数
x<- c(.045, .021, .255, .019)
xm = mean(x)
xg = exp(mean(log(x)))#exp指数 log对数
#中位数
median(temp100,na.rm = T)
#分位数
quantile(airquality$Temp, na.rm = T)
# 0% 25% 50% 75% 100% 50%中位数 0%最小值 25%上四分位数
# 56 72 79 85 97
quantile(airquality$Temp, na.rm = T, probs = c(0,0.1,0.9,1)) #通过probs自定义分位点
#方差
var(temp100)
#标准差
ts <- sd(temp100)
ts^2 #标准差的平方等于方差
#峰度和偏度
mysummary = function(x,...){
Av=mean(x,na.rm = T)
Sd=sd(x,na.rm = T)
N=length(x[!is.na(x)])
Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
result=c(argv=Av, sd=Sd, skew=Sk, kurt=Ku)
return (result)
}
mysummary(temp100)
# argv sd skew kurt
#30.109613023 1.033804058 -0.008489863 -0.597720454
#通过apply进行提交
apply(airquality[,c(-5,-6)],2,FUN=mysummary)
#Ozone Solar.R Wind Temp
#argv 42.129310 185.9315068 9.95751634 77.8823529
#sd 32.987885 90.0584222 3.52300135 9.4652697
#skew 1.209866 -0.4192893 0.34102753 -0.3705073
#kurt 1.112243 -1.0040581 0.02886468 -0.4628929
非单封分布:
#非单峰分布不能简单计算均值
x=rnorm(100,50,9)
y=rnorm(200,150,9)
z=c(x,y)
plot(density(z)) #使用密度曲线画图
abline(v=mean(z),col=3,lw=3)
双变量函数
协方差:cov
相关系数:cor 通过相关系数计算相关性
缺失值处理:行删除、配对删除等
#协方差
cov(airquality[,-5:-6],use = 'complete.obs') #行删除,处理缺失值
cov(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除,处理缺失值
#相关系数
cor(airquality[,-5:-6],use = 'complete.obs') #行删除
cor(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除
#结果为对称矩阵
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01