京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言作社群关系分析
在反映大量人群或事物之间的关系时,社交网络图可以清晰的展示’群体’的内含和外延。例如,群体的规模、核心、与其他群体的交叠情况。
社交关系图来表示应用人数和之间的交叠关系,这样更加美观,特别是当应用较多的时候。
两种应用使用人数的示意图
改进后的两种应用使用人数的示意图
数据的准备:
1、首先,整理一份原始数据,文件名是app_sub.txt,数据格式如下:
编号,应用名称
11111,滴滴打车
99999,美图秀秀
99999,微信
99999,优酷
22222,淘宝
22222,滴滴打车
22222,大众点评
……
代表有2980名用户使用APP的情况,各位在自行练习时可以采用随机函数来生成号码清单。
2.利用R读入数据。
g <- read.table(“app_sub.txt”,header= FALSE,sep = “,”,colClasses =c(“character”,”character”))
3.去除NA值
g1<-na.omit(g)
开始绘制简单的社交关系图:
1.简单的社交网络
library(igraph) #加载igraph包
x<-par(bg=”black”) #设置背景颜色为黑色
g2 = graph.data.frame(d = g1,directed = F); #数据格式转换
V(g2) #查看顶点
E(g2) #查看边
#使用layout.fruchterman.reingold方式呈现图形
plot(g2,layout=layout.fruchterman.reingold,vertex.label=NA) #显示网络图
上面的社交网络图中大部分顶点重叠在一起,根本不能看出社交网络中顶点之间的连接关系。下面需要对顶点和边的格式做调整。
3.对顶点和边的格式做调整
设置vertex.size来调整顶点大小, 设置vertex.color来改变显示颜色。
plot(g2,layout=layout.fruchterman.reingold,vertex.size=2, vertex.color=”red”,edge.arrow.size=0.05,vertex.label=NA) #设置vertex大小和颜色后显示网络图
上图中顶点明显归属于某个或某几个社区。但所有的点都是同一个颜色,不能直观呈现出社区的概念。
划分网络图中的社区:
1.利用igraph自带的社区发现函数实现社区划分Igraph包中社区分类函数有以下几种:
不同的分类算法,速度和适用社区网络大小都有所侧重。对于同一网络,采用什么样的分类算法需要实践后去人工判断是否符合预期。
下面利用只有两个社区网络的数据来验证walktrap.community和edge.betweenness.community分类结果的不同之处。
下图是walktrap算法,step=10的情况下得出的结果。原本的2个社区网络被分为66类。把两个大社区分成了一类,把两大社区重叠的部分分成了很多类。显然这不是我们所希望看到的分类结果。可见walktrap算法不太适合网络数量较小的情况。
下图是edge.betweenness算法的出的结果。社区网络被分成两类
edge.betweenness算法算法的呈现
2.美化图形(以顶点分类)
利用walktrap.community进行社区划分,对不同的社区赋值不同的颜色。为了呈现更多的点和线的关系,我们采用了透明化的处理方式。
com = walktrap.community(g2, steps = 10)V(g2)$sg=com$membershipV(g2)$color = rainbow(max(V(g2)$sg),alpha=0.8)[V(g2)$sg]plot(g2,layout=layout.fruchterman.reingold, vertex.size=1,vertex.color=V(g2)$color, edge.width=0.4,edge.arrow.size=0.08,edge.color = rgb(1,1,1,0.4),vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
完成最终的效果图:
1.美化图形(以边线分类)
另一种呈现方式,是点的颜色不变,将不同社区的连线颜色分类。
E(g1)$color=V(g1)[name=ends(g1,E(g1))[,2]]$color #为edge的颜色赋值
V(g1)[grep(“1”, V(g1)$name)]$color=rgb(1,1,1,0.8) #为vertex的颜色赋值
plot(g1,layout=layout.fruchterman.reingold, vertex.size=V(g1)$size, vertex.color= V(g1)$color, edge.width=0.3,edge.color = E(g1)$color,vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
通过上图可以看出本次实验数据中用户体量最大的APP分别是:微信、微博、淘宝、京东。社区交汇的点表示每两个APP之间的共有用户。例如,微信和微博的共有用户位于上图右上角橘黄色线条和黄色线条的交汇处。
社交网络图是近年来展示复杂网络的一种直观的方式。利用社区发现算法对复杂网络进行聚类,可以挖掘出复杂网络包含的深层意义。例如,发现公司组织架构的相关性,利用群体相似性进行“猜你喜欢”的推荐活动。数据分析师培训
利用R语言的igraph作社群挖掘的图
借助R语言的igraph包将用户的社交关系以图形化的方式展现出来,以歌手为例
据根据用户分享的歌曲,使用协同过滤算法计算歌手之间的关联关系。
使用了R语言的可视化包igraph
library(igraph)#读取数据,注意编码格式是utf-8singer <- read.csv('c:/data/tmp/singers-sub.csv', head=T,fileEncoding='UTF-8',stringsAsFactors=F)#加载数据框g <- graph.data.frame(singer)#生成图片,大小是800*800pxjpeg(filename='singers.jpg',width=800,height=800,units='px')
plot(g,
vertex.size=5, #节点大小
layout=layout.fruchterman.reingold, #布局方式
vertex.shape='none', #不带边框
vertex.label.cex=1.5, #节点字体大小
vertex.label.color='red', #节点字体颜色
edge.arrow.size=0.7) #连线的箭头的大小#关闭图形设备,将缓冲区中的数据写入文件dev.off()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24