京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户调研、竞品分析、数据分析、行业分析4个方法,轻松挖掘产品需求
一般产品的需求来源,除了老板和其他同事(运营或市场)的业务需求,还可以来自以下几个方面:
1.用户调研
用户调研的手法有很多,如问卷调查、用户访谈。这类方法的好处是操作简单、反馈周期短、贴近用户。但是,用户调研也很容易产生比较大的偏差。对此,可以从调研方和调研对象两方面进行归纳和建议。
调研方的先入为主
在设计调查问卷的时候,我们往往会有先入为主的毛病,自己挖个洞引导用户往里钻。这样做可以获得自己想要的“调研真相”,但也远离了真正的用户需求。所以在进行用户调研的时候一定要遵守客观、谨慎的原则,而不是自己挖个洞然后引导用户往里钻。
闷声不吭的主流用户
我们可以将用户分为3种类型:
专家型用户:热衷于探索新功能,并提出各种用户反馈和建议,恨不能有个个性化定制版本的产品。这类用户虽然很积极,但占比很少;
随机型用户:如果学习成本足够低,这类用户还是会愿意使用新功能的。他们比专家型用户多,但也只是少数;
主流用户:基本只用几个核心功能,一声不吭的用,用完就走。这类用户占至少80%。
而很多时候,会响应调研、积极反馈的,往往就是占比最少的专家型用户,他们兴高采烈的提需求,产品喜出望外的接需求,最终做出来的是大部分用户都不会用的功能。因此,在获得调研报告或用户反馈时,必须理清用户属于哪类、需求是否为核心需求。
2.竞品分析
竞品分析算是做产品的基本功和日常任务了。总的来说,竞品分析的作用就是:
更清晰的了解市场态势及走向,让团队跟上趋势;
更具体的分析业务场景,更细致的把握用户需求;
借鉴竞品优点,规避竞品缺点。
竞品分析的流程
一般来说,竞品分析的姿势是这样的:
确定竞品分析目标。明确竞品分析的目的;圈定竞品分析的边界,选择合适的分析对象。
确定分析维度。对产品目标进行拆解,分析了解用户需求,据此获得竞品分析的维度:分析的侧重点,以及分析时需要采用什么标准。
进行对比分析。按照步骤二所得维度,对所选竞品进行逐项对比、分析优劣。
总结及建议。总结对比分析的收获,给出有建设性的解决方案。
中庸的困局
然而,就算掌握了分析流程,也未必给得出具有建设性建议的竞品分析报告。
一来,任何分析都没有银弹可言,流程的合理无法弥补分析思维的不足;
二来,随着互联网发展愈加成熟,产品愈发同质化——就连当年特立独行的苹果手机,也越来越像安卓机子了——分析愈发中庸的竞品往往只能得出愈发中庸的结论。
3.数据分析
数据分析所得来的用户需求,会比用户调研的更靠谱些。因为很多时候,用户表达的都是自己想要的,而不是真正需要的,但用户行为所遗留下的数据却是很诚实的。
据说,微信出来之前,微博的产品做过数据分析,发现有30%左右的用户非常高频的使用发私信功能(即为移动IM),但微博并没有重视这一点,这个疏漏也间接造就了微信等一大波移动IM的崛起。
数据分析的流程
数据分析一般的流程如下,与产品开发及运营紧密结合,从而做到让数据引导产品运营及需求管理:
屁股决定脑袋的分析
比起用户调研和竞品分析,数据分析更加系统化——这句话反过来说,就是坑也更多:
数据来源:必须保证源数据的真实、完整及准确。为此,必须和数据挖掘的技术人员以及和业务相关的运营人员说明清楚数据分析的目的、数据的范围及数据统计的口径;
数据备份:处理前请备份,处理前请备份,处理前请备份——重要的事情说三遍。
屁股决定脑袋:要从一堆数据里提取出具备说服力的结论不容易,但要为自己的论点拼凑出一套数据却很简单——虽然这套数据最终也是站不住脚的——在做数据分析的时候,客观谨慎是必须的原则。
4.行业分析
如果说,用户调研和竞品分析是看现在,数据分析是看过去,那么,行业分析就是看未来。行业分析的方法论有波特五力分析模型、SCP产品组织理论等。
行业分析可帮助产品团队抓住市场趋势,做到攻守有据。
行业分析的理论模型发展至今,已非常成熟。需要注意的是,行业分析的第一个步骤——也是重点和难点——就是如何划分行业的范围。卖煤气炉的做行业分析时,要看的不仅仅是其他卖煤气炉的,还得看看人家的电磁炉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27