
R语言如何导入数据
在使用R的时候,我们肯定需要导入数据,现在总结一下如何导入不同类型的数据:
1.使用键盘输入数据
在导入数据比较少的时候,我们使用这种方法。R中的函数 edit() 会自动调用一个允许手动输入数据的文本编辑器。具体步骤如下:
(1) 创建一个空数据框(或矩阵) ,其中变量名和变量的模式需与理想中的最终数据集一致;
(2) 针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中。在下例中,你将创建一个名为 mydata 的数据框,它含有三个变量: age (数值型) 、 height(字符型)和 weight (数值型) 。然后通过edit()函数调用文本编辑器,键入数据,最后保存结果。编辑器界面如下,我们在这个界面可以输入变量值,也可以改变变量类型。
[plain] view plain copy
mydata<-data.frame(age=numeric(0),height=numeric(0),weight=numeric(0))
edit(mydata)
需要注意的是函数 edit() 事实上是在对象的一个副本上进行操作的。如果你没有将它其赋值到一个对象,你的所有修改将会全部丢失!
2.导入带分隔符的文本文件数据/CSV文件
read.table() 可以从带分隔符的文本文件中导入数据。此函数可读入一个表格格式的文件并将其保存为一个数据框。其语法如下:
read.table(file,header=value,sep="delimter",row.names="name")
file表示文件名,header表示表的首行是否包含变量值的逻辑值,sep 用来指定分隔数据的分隔符, row.names 用以指定一个或多个表示行标识符的变量,是个一可选参数,他还有许多参数,可以通过帮助文档进行查看。
3.导入Excel数据
虽然Excel可能是世界上最流行的数据分析工具,但R如果直接读取Excel数据还是比较困难的。
但我们可以在Excel中将数据将其导出为一个逗号分隔文件(csv) ,并使用前文描述的方式将其导入R中。在Windows系统中,你也可以使用 RODBC 包来访问Excel文件。但它好像只能在32位的R软件上面使用。虽然也有一些包可以这些问题,比如gdata,XLConnect,xlsReadWrite等,但它的有许多前提要求,比如Java环境,Per,或者32-bit R。因此一般情况将数据转换为csv文件或者将数据导入到数据库在导入在R。
4.导入XML数据
强大的R中有若干用于处理XML文件的包。 XML 包允许用户读取、写入和操作XML文件。因为我还没有遇到这种数据,因此还不太清楚xml包大体如何使用,感兴趣的朋友可以下载xml包,通过帮助文档进行学习。
5.从网页抓取数据
不仅Python可以爬取网页数据,R也可以在Web数据抓取。在这个的过程中,用户可以从互联网上提取嵌入在网页中的信息,并将其保存为R中的数据结构以做进一步的分析。 完成这个任务的一种途径是使用函数 readLines()下载网页,然后使用如 grep() 和 gsub() 一类的函数处理它。对于结构复杂的网页,可以使用RCurl 包和 XML 包来提取其中想要的信息。
6.导入SPSS数据
我们可以调用通过 foreign 包中的函数 read.spss() 将SPSS数据集可以导入到R中,也可以使用 Hmisc 包中的 spss.get() 函数。函数 spss.get() 是对 read. spss() 的一个封装,它可以为你自动设置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果。使用的时候我们只需要安装Hmisc 包,在较新的R中foreign 包已被默认安装。
[plain] view plain copy
mydata<-spss.get("data.sav",use.value.labels=TRUE)
这段代码中,data.sav 是要导入的SPSS数据文件, use.value.labels=TRUE 表示让函数将带有值标签的变量导入为R中水平对应相同的因子, mydataframe 是导入后的R数据框。
7.读入数据库数据
在访问数据库的时候,我们都需要一个odbc驱动 我们需要下载安装RODBC包。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15