R语言如何导入数据
在使用R的时候,我们肯定需要导入数据,现在总结一下如何导入不同类型的数据:
1.使用键盘输入数据
在导入数据比较少的时候,我们使用这种方法。R中的函数 edit() 会自动调用一个允许手动输入数据的文本编辑器。具体步骤如下:
(1) 创建一个空数据框(或矩阵) ,其中变量名和变量的模式需与理想中的最终数据集一致;
(2) 针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中。在下例中,你将创建一个名为 mydata 的数据框,它含有三个变量: age (数值型) 、 height(字符型)和 weight (数值型) 。然后通过edit()函数调用文本编辑器,键入数据,最后保存结果。编辑器界面如下,我们在这个界面可以输入变量值,也可以改变变量类型。
[plain] view plain copy
mydata<-data.frame(age=numeric(0),height=numeric(0),weight=numeric(0))
edit(mydata)
需要注意的是函数 edit() 事实上是在对象的一个副本上进行操作的。如果你没有将它其赋值到一个对象,你的所有修改将会全部丢失!
2.导入带分隔符的文本文件数据/CSV文件
read.table() 可以从带分隔符的文本文件中导入数据。此函数可读入一个表格格式的文件并将其保存为一个数据框。其语法如下:
read.table(file,header=value,sep="delimter",row.names="name")
file表示文件名,header表示表的首行是否包含变量值的逻辑值,sep 用来指定分隔数据的分隔符, row.names 用以指定一个或多个表示行标识符的变量,是个一可选参数,他还有许多参数,可以通过帮助文档进行查看。
3.导入Excel数据
虽然Excel可能是世界上最流行的数据分析工具,但R如果直接读取Excel数据还是比较困难的。
但我们可以在Excel中将数据将其导出为一个逗号分隔文件(csv) ,并使用前文描述的方式将其导入R中。在Windows系统中,你也可以使用 RODBC 包来访问Excel文件。但它好像只能在32位的R软件上面使用。虽然也有一些包可以这些问题,比如gdata,XLConnect,xlsReadWrite等,但它的有许多前提要求,比如Java环境,Per,或者32-bit R。因此一般情况将数据转换为csv文件或者将数据导入到数据库在导入在R。
4.导入XML数据
强大的R中有若干用于处理XML文件的包。 XML 包允许用户读取、写入和操作XML文件。因为我还没有遇到这种数据,因此还不太清楚xml包大体如何使用,感兴趣的朋友可以下载xml包,通过帮助文档进行学习。
5.从网页抓取数据
不仅Python可以爬取网页数据,R也可以在Web数据抓取。在这个的过程中,用户可以从互联网上提取嵌入在网页中的信息,并将其保存为R中的数据结构以做进一步的分析。 完成这个任务的一种途径是使用函数 readLines()下载网页,然后使用如 grep() 和 gsub() 一类的函数处理它。对于结构复杂的网页,可以使用RCurl 包和 XML 包来提取其中想要的信息。
6.导入SPSS数据
我们可以调用通过 foreign 包中的函数 read.spss() 将SPSS数据集可以导入到R中,也可以使用 Hmisc 包中的 spss.get() 函数。函数 spss.get() 是对 read. spss() 的一个封装,它可以为你自动设置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果。使用的时候我们只需要安装Hmisc 包,在较新的R中foreign 包已被默认安装。
[plain] view plain copy
mydata<-spss.get("data.sav",use.value.labels=TRUE)
这段代码中,data.sav 是要导入的SPSS数据文件, use.value.labels=TRUE 表示让函数将带有值标签的变量导入为R中水平对应相同的因子, mydataframe 是导入后的R数据框。
7.读入数据库数据
在访问数据库的时候,我们都需要一个odbc驱动 我们需要下载安装RODBC包。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03