京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:探索性分析;强大的综合性描述性统计模块
SPSS还提供了一种综合性的数据描述工具:探索性分析,它能够一次性将上述分析结果和其它更详细的分析结果呈现出来,不能能够输出数据结果,还能提供各种直观统计图。
探索性分析
生活中,高空作业一般都会借助外物如吊车等工具帮住自己达到目标,而统计学中也一样,在对数据的基本特征有所了解,需要对数据进行更为细致和深入的描述性观察分析,这时候就需要绘制统计图来辅助分析,这样就使得数据分析更为深入、细致和全面。
探索性分析项目
描述性统计结果。输出各种描述性统计指标,例如,均值、方差、标准差等。
正态分布检验。通过对数据的进一步探索分析,验证其是否符合正态分布,进而确定能否使用正态分布数据的分析方法进行分析。常用的正态分布验证是Q-Q概率图。
方差齐性检验。通过Levene检验比较各组数据之间的方差是否相等,以此判断数据的离散程度是否存在差异。若Levene检验得到的显著性水平小于0.05,就拒绝方差相同的假设。
寻找数据中的奇异值。在数据整理输入过程中,对出现某些影响分析结果的奇异值进行删除或保留。
探究性分析结果的图形描述
探究性分析增加了图形的方式对数据的分布给予直观呈现。图形包括茎叶图、直方图、箱图和Q-Q概率图。茎叶图:是用以描述连续变量的一种手法,主要包括频率、茎和叶三个部分。其中,茎和叶分布代表数据的整数部分和小数部分。茎代表观测值的十位数,叶对应观测值的个位数。一个个位数代表一个观测值,每一行左边的频率就是该行对应的个案数。每个茎叶图的底部还注明了茎宽和每叶代表的个案数。数据的值即为茎叶组成的数值结合乘以茎宽。茎叶图既保留了数据的频率分布,也保存了原始数据,是探究性分析常用方法之一。
直方图:用于对连续变量数据的观察。它是以区间作为水平轴,以各个区间的频率作为相应条块的高度来绘制出统计图。从直方图上可以直观看出数据的分布状况等。
箱图:是表现五数(最小值、最大值、中位数、第一个四分位数、第三个四分位数)的图形形式,其中矩形为箱图的主题,两个四分位数之差为箱长,也称内四分位限。箱体部分包含全体数据约50%的数值,箱体的上中下三条平行线分别表示75%、50%(中位数)和25%分位数。纵贯箱体中间的竖线称为触须线,触须线上下两端的横线代表该组变量数值的最大值(97.5%)和最小值(2.5%)。箱图在比较两个或多个变量时尤其有用,它还可用于判别极端值的存在。如果箱图中有异常值,用【。】表示,如果有极端异常值,则用【*】表示。
案例分析
现有某校451名学生的体检数据,测量了身高、体重、肺活量、血压、心率等指标。对所有学生的身高数据进行探索性分析,进一步了解该校学生的身高情况。
分析步骤
1、选择菜单【分析】-【描述统计】-【探索】。将变量身高选入因变量列表;将性别选入因子列表;将编号变量选入标注个案。
因变量指待分析的数据变量;
因子列表指分类变量,即按照因子变量对因变量进行分类;
标注个案指对异常值的标注信息;
本案例将身高变量选为因变量,即待分析数据变量;将年龄变量选为因子变量,即按照年龄对身高数据进行分类;标注个案选择编号变量,在统计图上,异常值将标注其编号。
2、统计指标及统计图选择。
为了展示探索性分析的所有功能,我们将所有的统计指标及统计图类型都进行勾选。其它的选项比较简单,这里需要对伸展与级别Levene检验进行说明。
3、点击【继续】,然后点击【确定】,输出结果。
结果解读
1、个案处理摘要;从下表可以知道每个年龄的有效个案数、缺失个案数和总计个案数。
2、描述统计摘要表;由于年龄跨度较大,所以在这里只展示10岁的学生数据。包括了所有的描述性统计指标。
3、M-估计值;
当数据中存在极端值和奇异值时,M估计值是更好的平均值和中位数的替代者,能够更好的反映数据的集中程度。M估计采取的办法是给每个个案数值增加权重,这样能够有效的减少极端值和异常值对平均值和中位数的影响,从而让分析者更好的了解手中的数据。表中有四个M估计值,它们的区别在于权重不同。如果描述统计中,平均值和中位数与M估计表的有很大出入,说明原始数据中存在极端值。
4、百分位数;表中显示每个年龄数据的不同百分位的身高。
5、正态分布检验结果;探索性分析采用了两种正态分布检验方法:K-S检验和S-W检验。
结果展示了每个年龄学生的身高是否服从正态分布。
6、各种统计图形,这里以10岁学生群体的统计图为例。输出结果中包括了直方图、茎叶图、Q-Q图、去势Q-Q图以及箱图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22