京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对应分析方法与对应图解读方法-—七种分析角度
对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。交互表的信息以图形的方式展示。主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。适用于两个或多个定类变量。
主要应用领域:
概念发展 (Concept Development)
新产品开发 (New Product Development)
市场细分 (Market Segmentation)
竞争分析 (Competitive Analysis)
广告研究 (Advertisement Research)
主要回答以下问题:
谁是我的用户?
还有谁是我的用户?
谁是我竞争对手的用户?
相对于我的竞争对手的产品,我的产品的定位如何?
与竞争对手有何差异?
我还应该开发哪些新产品?
对于我的新产品,我应该将目标指向哪些消费者?
数据的格式要求
对应分析数据的典型格式是列联表或交叉频数表。 常表示不同背景的消费者对若干产品或产品的属性的选择频率。背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析
上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)
当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,
其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
分别定义好行列变量以及它们的取值范围!
对应分析中,6×10的列联表(交互表)可以得到行列维度最小值减1的维度,我们看到第一维度Dim1解释了列联表的60.4%,第二维度Dim2解释了列联表的33.0%,说明在两个维度上已经能够说明数据的93.4%,这是比较理想的,当然我们也可以看卡方检验等!
解读方法:
记住:是垂点到GUN正向排名,从图中我们可以看出,希望GUN方法的人依次是M15、M30、M45、M60、M80、F15等等;依次类推,我们还可以从中心向任意一种方法作垂线,都可以排出每种方法选择人群的偏好次序;当然,你也可以从中心往所有的人作向量,得到每一类人在选择六种方法上的偏好排名!
你是否可以看出,F15年轻的女性对六个“品牌”的偏好吗?
从图上我们可以看出,当我们从中心向任意两个点(相同类别)做向量的时候,夹角是锐角的话表示两个方法具有相似性,锐角越小越相似;也就是说,GUN和GAS是相似品牌,当如也是竞争品牌,也具有替代性,如果这次开枪没有自杀成功,下次他一定选择毒气啦;我们也看出F15和F30的人比较相似,但F15与M80就有非常大的差异了,因为如果作向量他们是钝角,几乎是平角了!
因此,落在第四象限的是年轻的女性所喜欢的品牌!
我们可以在图上以POISON为定位点,以POISON为圆心,以它的利益为半径画圆,那么我们可以得出这样的结论:越先圈进来的人就是最喜欢这个品牌的消费群,越先圈进来的品牌越可能是竞争品牌;当然,你也可以以某类人作为圆心,同意解读;如果POISON是市场不存在的,在调查中可以设定为理想点,这样我们就可以得到理想点模型,同理也可以得到反理想点模型分析!
我们也可以尝试采用多元对应分析,但不如简单对应分析有意义!
简单对应分析的优点:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27