京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中两种重复测量资料分析过程的比较
在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量;一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意是内容而不是结果,只要操作正确,结果应该是一致的,而输出内容的差异则反映了两种方法的侧重点不同,那么两种方法有何异同以及使用时该如何选择呢?可以从下几个方面进行探讨
一、基本思路不同
重复度量:重复度量的分析思路还是是基于传统的方差分析思想,即变异分解,只不过在分解时加入了对象间变异和对象间与时间交互作用的变异两部分,模型还是一般线性模型的范畴,这点从结果输出日志的标题中也可以看出,但是在SPSS操作中,并不需要选入因变量。
混合线性模型:混合线性模型是一般线性模型的推广,是专门用来解决因变量非独立的数据,也就是层次聚集性数据。而重复测量资料就是属于此类数据,因此混合线性模型对重复测量资料的数据分析是从纯粹的模型求解的角度出发,而不是变异分解,在SPSS操作中需要选入因变量。
二、结果中某些算法不同
实际上二者的算法并非完全不同,毕竟独属于多元分析,还是有类似的地方。
重复度量:从分析结果中可以看出,重复度量结果既包含一元分析也包含多元分析,并且以Mauchly球形度检验作为选择标准,实际上球形度检验就是将重复测量资料看做是配对t检验的推广,通过检验两两时间点之间差值的方差协方差矩阵来判断该资料因变量之间是否真的存在相关性。其多元分析结果部分,和多元方差一样使用了四种检验方法,都是基于矩阵计算的。在参数估计上,和一般线性模型一样,使用的是对比矩阵,以某一水平为参照,其余水平和其进行对比进行计算
混合线性模型:无论是参数估计还是其他结果的计算,都使用了更加稳健的多元分析方法,如极大似然法、迭代法、熵等
三、应用范围不同
重复度量:主要用来分析因素效应和交互作用对实验结果的影响,因素效应和交互作用是否存在时间趋势,以及进一步分析各因素水平间的两两比较等,在SPSS操作中并不涉及因变量,只是分析因素之间的关系,离不开一般线性模型的分析范畴,并且在重复度量中也没有办法加入随机因素
混合线性模型:既然是一般线性模型的推广,那么其应用范围肯定比一般线性模型要广,除了可以对层次聚集性数据进行分析之外,还可以加入随机效应,建立回归模型,并且可以指定协方差矩阵的类型,还可以对嵌套实验设计进行分析。可以说,重复度量能做的分析,混合线性模型都能做,而反过来则未必。
四、数据输入的格式不同
重复度量:由于重复度量是以方差分析为基础,将每次测量时间作为一种单独的因素看待(对象内变异因素),数据输入格式中,每次测量时间单独为一列变量,测量数据就输入在每次测量的时间下面,数据格式如下
混合线性模型:将时间总的作为一种因素(变量),各个时间点为不同的水平,数据格式为标准的多水平模型,测量数据也单独为一个变量,与相应的测量时间对应,在分析时,测量数据一般作为因变量,时间作为协变量,具体数据格式如下
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22