
Python机器学习之Logistic回归
大数据时代,数据犹如一座巨大的金矿,等待我们去发掘。而机器学习和数据挖掘的相关技术,无疑就是你挖矿探宝的必备利器!工欲善其事,必先利其器。很多初涉该领域的人,最先困惑的一个问题就是,我该选择哪种“工具”来进行数据挖掘和机器学习。我这里的工具主要指的是“语言、系统和平台”。尽管之于机器学习而言,语言和平台从来都不算是核心问题,但是选择一个你所熟悉的语言和环境确实可以令你事半功倍。
现在你的选择可谓相当广泛,例如Matlab、R和Weka都可以用来进行数据挖掘和机器学习方面的实践。其中,Matlab是众所周知的商业软件,而R和Weka都是免费软件。R是应用于统计和数据分析的首屈一指的计算机语言和平台,如果你是拥有数学或统计学相关专业背景的人,那么使用R来进行数据挖掘就是一个相当不错的选择。我前面有很多介绍利用R语言进行数据挖掘的文章可供参考:
在R中使用支持向量机(SVM)进行数据挖掘
机器学习中的EM算法详解及R语言实例
Weka的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化的,基于Java环境下开源的机器学习(machine learning)以及数据挖掘(data mining)软件。2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习 历史上的里程碑,是现今最完备的数据挖掘工具之一。如果你是一个忠实的Java拥护者,那么使用Weka来进行数据挖掘就非常明智。
如果你对R和Weka(或Java)都不是很熟悉,那么我今天将向你推荐和介绍另外一个进行机器学习和数据挖掘的利器——Python。Python是当前非常流行的计算机编程语言,相对C、C++来说,Python的门槛极低,可以很轻松的上手和掌握。More importantly,Python用于为数众多,而且相当完善的软件包、工具箱来实现功能上的扩展。这一点与R语言来说非常相似(R的扩展包也可以多到超乎你的想象)。
在Python中进行机器学习所需要的软件包主要是Scikit-Learn。Scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理。
作为一个范例,我们今天将演示在Python (版本是3.5.1)中基于Scikit-Learn所提供的函数来实现Logistic Regression。从名字来看,Logistic 回归 应该属于一种回归方法(事实上,它也确实可以被用来进行回归分析),但实际中,它更多的是被用来作为一种“分类器”(Classifier)。而且,机器学习中,分类技术相比于回归技术而言也确实是一个更大阵营。
在下面这个示例中,我们会更多的使用仅属于Scikit-Learn中的函数来完成任务。
下面这个例子中的数据源于1936年统计学领域的一代宗师费希尔发表的一篇重要论文。彼时他收集了三种鸢尾花(分别标记为setosa、versicolor和virginica)的花萼和花瓣数据。包括花萼的长度和宽度,以及花瓣的长度和宽度。我们将根据这四个特征(中的两个)来建立Logistic Regression模型从而实现对三种鸢尾花的分类判别任务。
首先我们引入一些必要的头文件,然后读入数据(注意我们仅仅使用前两个特征)
[python] view plain copy 在CODE上查看代码片派生到我的代码片
import numpy as npy
from sklearn import linear_model, datasets
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import accuracy_score, classification_report
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target
作为演示,我们来提取其中的前5行数据(包括特征和标签),输出如下。前面我们提到数据中共包含三种鸢尾花(分别标记为setosa、versicolor和virginica),所以这里的标签 使用的是0,1和2三个数字来分别表示对应的鸢尾花品种,显然前面5行都属于标签为0的鸢尾花。而且一共有150个样本数据。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
>>> for n in range(5):
print(X[n], Y[5])
[ 5.1 3.5] 0
[ 4.9 3. ] 0
[ 4.7 3.2] 0
[ 4.6 3.1] 0
[ 5. 3.6] 0
>>> len(X)
150
现在我们利用train_test_split函数来对原始数据集进行分类采样,取其中20%作为测试数据集,取其中80%作为训练数据集。
[python] view plain copy
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
然后,我们便可以利用LogisticRegression函数来训练一个分类器
[python] view plain copy 在CODE上查看代码片派生到我的代码片
logreg = linear_model.LogisticRegression(C=1e5, , solver='lbfgs', multi_class='multinomial')
logreg.fit(X_train, y_train)
请留意Scikit-Learn文档中,对于参数solver和multi_class的说明。其中solver的可选值有4个:‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’。
For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is
faster for large ones.
For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handle
multinomial loss; ‘sag’ and ‘liblinear’ are limited toone-versus-rest schemes.
参数multi_class的可选值有2个:‘ovr’, ‘multinomial’。多分类问题既可以使用‘ovr’,也可以使用 ‘multinomial’。但是如果你的选项是 ‘ovr’,那么相当于对每个标签都执行一个二分类处理。Else the loss minimised is the multinomial loss fit acrossthe entire probability distribution. 选项 ‘multinomial’ 则仅适用于将参数solver置为‘lbfgs’时的情况。
然后再利用已经得到的分类器来对测试数据集进行预测
[python] view plain copy 在CODE上查看代码片派生到我的代码片
prediction = logreg.predict(X_test)
print("accuracy score: ")
print(accuracy_score(y_test, prediction))
print(classification_report(y_test, prediction))
预测结果如下,可见总体准确率都在90%以上,分类器执行的还是相当不错的!
[python] view plain copy 在CODE上查看代码片派生到我的代码片
accuracy score:
0.9
precision recall f1-score support
0 1.00 1.00 1.00 10
1 0.88 0.78 0.82 9
2 0.83 0.91 0.87 11
avg / total 0.90 0.90 0.90 30
In detail, 我们还可以利用predict_proba()函数和predict()函数来逐条检视一下Logistic Regression的分类判别结果,请看下面的示例代码:
[python] view plain copy 在CODE上查看代码片派生到我的代码片
logreg_proba = logreg.predict_proba(X_test)
logreg_pred = logreg.predict(X_test)
for index in range (5):
print(logreg_proba[index])
print("Predict label:", logreg_pred[index])
print("Correct label:", y_test[index])
我们仅仅输出了前五个测试用例的分类结果,可见这五个样本的预测结果中前四个都是正确的。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
[ 8.86511110e-26 5.64775369e-01 4.35224631e-01]
Predict label: 1
Correct label: 1
[ 9.99999942e-01 3.78533501e-08 2.02808786e-08]
Predict label: 0
Correct label: 0
[ 9.92889585e-70 8.98623548e-02 9.10137645e-01]
Predict label: 2
Correct label: 2
[ 4.40394856e-21 5.97659713e-01 4.02340287e-01]
Predict label: 1
Correct label: 1
[ 5.68223824e-43 2.90652338e-01 7.09347662e-01]
Predict label: 2
Correct label: 1
当然,Logistic Regression的原理网上已有太多资料进行解释,因此本文的重点显然并不在于此。但是如果你对该算法的原理比较熟悉,自己实现其中的某些函数也是完全可以的。下面的代码就演示了笔者自行实现的predict_proba()函数和predict()函数,如果你对此感兴趣也不妨试试看。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
class MyLogisticRegression:
def __init__(self, weights, constants, labels):
self.weights = weights
self.constants = constants
self.labels = labels
def predict_proba(self,X):
proba_list = []
len_label = len(self.labels)
for n in X: #.toarray():
pb = []
count = 0
for i in range(len_label):
value = npy.exp(npy.dot(n, self.weights[i]) + self.constants[i])
count = count + value
pb.append(value)
proba_list.append([x/count for x in pb])
return npy.asarray(proba_list)
def predict(self,X):
proba_list = self.predict_proba(X)
predicts = []
for n in proba_list.tolist():
i = n.index(max(n))
predicts.append(self.labels[i])
return npy.asarray(predicts)
与之前的执行类似,但是这次换成我们自己编写的函数
[python] view plain copy 在CODE上查看代码片派生到我的代码片
# Print the result based on my functions
print('\n')
my_logreg = MyLogisticRegression(logreg.coef_, logreg.intercept_, logreg.classes_)
my_logreg_proba = my_logreg.predict_proba(X_test)
my_logreg_pred = my_logreg.predict(X_test)
for index in range (5):
print(my_logreg_proba[index])
print("Predict label:",logreg_pred[index])
print("Correct label:", y_test[index])
最后让我们来对比一下执行结果,可见我们自己实现的函数与直接调用Scikit-Learn中函数所得之结果是完全相同的。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
[ 8.86511110e-26 5.64775369e-01 4.35224631e-01]
Predict label: 1
Correct label: 1
[ 9.99999942e-01 3.78533501e-08 2.02808786e-08]
Predict label: 0
Correct label: 0
[ 9.92889585e-70 8.98623548e-02 9.10137645e-01]
Predict label: 2
Correct label: 2
[ 4.40394856e-21 5.97659713e-01 4.02340287e-01]
Predict label: 1
Correct label: 1
[ 5.68223824e-43 2.90652338e-01 7.09347662e-01]
Predict label: 2
Correct label: 1
最后需要补充说明的内容是,在我们自己编写的函数中存在这一句
[python] view plain copy 在CODE上查看代码片派生到我的代码片
for n in X: #.toarray():
请注意我们注释掉的内容,在本篇文章中,我们所使用的数据集属于是标准数据集,并不需要我们做Feature extraction。但是在另外一些时候,例如进行自然语言处理时,我们往往要将特征字典转换成一个大的稀疏矩阵,这时我们再编写上面的函数时就要使用下面这句来将稀疏矩阵逐行还原
[python] view plain copy 在CODE上查看代码片派生到我的代码片
for n in X.toarray():
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15