京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析产品的下一个进化:基于无埋点的有埋点
一直以来,人们把大数据和埋点技术紧紧捆绑在一起,大数据时代也被称为埋点时代。技术发展,更新更快的无埋点技术横空出世。那么埋点技术是不是就此被判了死刑,无埋点就是万能的了?非也,二者只会进化的更为高级。
为什么这样说呢?其实从埋点技术的诞生和发展不难看出,一切都是源于大数据的发展,对数据的需求更加全面和精准,为适应这种发展,埋点技术不断更新迭代。这也是大数据发展的根源。
埋点的进化发展史
互联网发展起始阶段,用户不关心流量,没有意识到需要检测网站信息,一切都处在野蛮生长的阶段,随着时代的进步,业务也在增长,网站的流量开始增多,这时大家意识到这些数据中蕴含着大量的用户信息,加之用户需求越来越复杂,这时运营人员就需要一些关键的数据作为参考。
比如一些互联网公司,发展到一定程度,都会有专门的数据团队或者兼职数据人员,对公司的一些业务指标负责。同时产品的迭代升级同样需要大量的数据来支撑,如果没有数据指标的支撑,又怎么衡量这个功能升级是不是合理的呢?互联网产品并不是功能越多就越好,产品是否经得起用户考验,还是要基于数据说话的,然后学习新知识,用于下一轮的迭代。于是,埋点就此诞生了!
从埋点发展到今天的无埋点经历三个阶段的升级,第一阶段是代码埋点,最初的埋点是在代码的关键部位植入N行代码,追踪用户的行为,得到想要的数据。挖开产品本身,找到收集点.进行源源不断的传递数据。简单的说,找节点,布代码,收数据。
但随着业务规模扩大,数据需求增多,埋点效率低下,采集成本过高等问题开始暴露,这时候新的埋点技术出现了,即第二阶段框架式埋点。
框架式埋点也称“可视化埋点”。用框架式交互手段来代替纯手工写代码,固化相应代码的做为SDK,方便直接调用.这是一个非常大的进步。框架式埋点很好地解决了代码埋点的埋点代价大和更新代价大两个问题。但框架式埋点能够覆盖的功能有限,关键在于不是所有的控件操作都可以通过这种方案进行定制,而且数据收集难度加大,因此无埋点技术走入了大众的视线。
“无埋点”则是先尽可能收集所有的控件的操作数据,然后再通过界面配置哪些数据需要在系统里面进行分析。“无埋点”相比框架式埋点的优点,一方面是解决了数据“回溯”的问题,另一方面,“无埋点”方案也可以自动获取很多启发性的信息。无埋点大大减少了开发人员的开发成本及技术和业务人员的沟通成本。可以说无埋点技术的出现,最大化的提升了数据收集的速度,大幅缩短了数据收集周期,使得原来不敢想的事情现在敢做了,原来碍于必须有时效性不敢收集的数据也可以迅速进行分析了,在这点上,无埋点技术对传统埋点技术的优势巨大。那么发展到无埋点是否就此为止了呢?答案是否定的。
下一个阶段---无埋点基础上的有埋点
从埋点到无埋点,每个阶段的演变都是顺应时代发展的需求,二者不是简单的被淘汰,而是在原来的基础上更新迭代,回到根源上来说,对数据的全面和精准,也是技术进化的一个催化加。因此我们有理由大胆猜测,数据分析技术只会继续下一个阶段的进化,基于无埋点上的有埋点,支持我们的理由是什么?
首先我们了解一下它的概念,所谓无埋点技术,并不是说完全不用在App中植入代码,而是需要调用SDK代码,在应用页面的加载过程中、点击事件传播过程中、在其中间的某个点自动嵌入监测代码来采集数据。简单来说,就是通过简单的引入一段代码来实现监测。目前主流的APP监测,引入监测方的SDK;网站端监测,则引入监测方的JS文件,通过引入的SDK或者JS文件来实现对APP或者网站的流量、页面热点、用户数等等这类基础数据的统计分析。因此无埋点,并非完全不埋点,只是少埋点,不是大家理解的不埋任何代码就能实现监测,无埋点不能脱离有埋点独立存在的。
其次,虽然无埋点看似十分先进,但也同样存在一些弊端,不能灵活地自定义属性,传输时效性和数据可靠性欠佳,由于所有的控件事件都全部搜集,给服务器和网络传输带来更大的负载;现有的无埋点技术并非官方标准方案,有可能在未来无法使用;监测需求相对比较基础,更多的是依据流量、用户、热点的一些分析统计,不涉及到一些自定义、或者更细化的统计分析,比如每个订单、会员的监测;或者页面存在jQuery时对页面热点的监测。
比如我们以APP来说,APP所有新闻页、产品详情页的类名都是一个,那么无埋点就无法区分不同新闻页或者产品详情页的数据,这就影响到了数据的精准,这种情况下就需要添加代码来实现。
就比如城市要铺设新的业务管道,那必须开挖路面,光看是不行的,同时要计量或控制管道的流量大小,知道管道里的流动情况,就必须在相应的节点上装相应的阀门,这就好像埋点一样。
有时一些特殊需求或者特殊格式,也需要额外手动发送请求代码来实现,比如滚动条高度、及其它稍复杂的监控都无法做到,如果需要采集全方位的数据进行更专业的分析,仍需要靠开发人员来埋点配置。
可见,无埋点在数据监测中并不能做到全面。这就注定埋点技术不会安安静静的选择“狗带”,无埋点技术又不是吹嘘的十分万能。实现全面监测,将二者有效的结合在一起才是发展的正理。
因此在基于无埋点的基础上,通过一些手动发送请求方式(也就是所谓的埋点),来实现全面监测,这是目前行业需求和技术发展的主流方向,这种技术既解决了数据分析中的弊端,又确保了数据的精准性,同时也具备很强的扩展性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21