京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、线性回归的概念
对连续型数据做出预测属于回归问题。举个简单的例子:例如我们在知道房屋面积(HouseArea)和卧室的数量(Bedrooms)的情况下要求房屋的价格(Price)。通过一组数据,我们得到了这样的关系:

这样的关系就叫做线性回归方程,其中
为回归系数。当我们知道房屋面积以及卧室数量时,就可以求出房屋的价格。当然还有一类是非线性回归。
二、基本线性回归
线性回归的目标是要求出线性回归方程,即求出线性回归方程中的回归系数
。我们可以使用平方误差来求线性回归系数。平方误差可以表示为:

可以使用矩阵表示
。对W求导,得到
。于是令其为0,即得到
的估计

三、基本线性回归实验
原始的数据

最佳拟合直线

MATLAB代码
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% load Data
A = load('ex0.txt');
X = A(:,1:2);%读取x
Y = A(:,3);
ws = standRegres(X,Y);
%% plot the regression function
x = 0:1;
y = ws(1,:)+ws(2,:)*x;
hold on
xlabel x;
ylabel y;
plot(X(:,2),Y(:,1),'.');
plot(x,y);
hold off
求权重的过程
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ ws ] = standRegres( X, Y )
[m,n] = size(X);
ws = zeros(m,1);
XTX = X'*X;
if det(XTX) == 0
disp('This matrix is singular, cannot do inverse');
end
ws = XTX^(-1) *(X'*Y);
end
四、局部加权线性回归
在线性回归中会出现欠拟合的情况,有些方法可以用来解决这样的问题。局部加权线性回归(LWLR)就是这样的一种方法。局部加权线性回归采用的是给预测点附近的每个点赋予一定的权重,此时的回归系数可以表示为

为给每个点的权重。
LWLR使用核函数来对附近的点赋予更高的权重,常用的有高斯核,对应的权重为

这样的权重矩阵只含对角元素。
五、局部加权线性回归实验
对上组数据做同样的处理:

MATLAB代码
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% load Data
A = load('ex0.txt');
X = A(:,1:2);
Y = A(:,3);
[SX,index] = sort(X);%得到排序和索引
%yHat = lwlrTest(SX, X, Y, 1);
%yHat = lwlrTest(SX, X, Y, 0.01);
%yHat = lwlrTest(SX, X, Y, 0.003);
hold on
xlabel x;
ylabel y;
plot(X(:,2),Y(:,1),'.');
plot(SX(:,2),yHat(:,:));
hold off
LWLR
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output ] = lwlr( testPoint, X, Y, k )
[m,n] = size(X);%得到数据集的大小
weight = zeros(m,m);
for i = 1:m
diff = testPoint - X(i,:);
weight(i,i) = exp(diff * diff'./(-2*k^2));
end
XTX = X'*(weight * X);
if det(XTX) == 0
disp('his matrix is singular, cannot do inverse');
end
ws = XTX^(-1) * (X' * (weight * Y));
output = testPoint * ws;
end
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ y ] = lwlrTest( test, X, Y, k )
[m,n] = size(X);
y = zeros(m,1);
for i = 1:m
y(i,:) = lwlr(test(i,:), X, Y, k);
end
end
当k=1时是欠拟合,当k=0.003时是过拟合,选择合适的很重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22