京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的资格认证,旨在提升用户数字技能,助力企业数字化转型,推动行业数字化发展。「CDA人才考核标准」是面向全行业数据相关岗位的一套科学化、专业化、国际化的人才技能准则,CDA考试大纲规定并明确了数据分析师认证考试的具体范围、内容和知识点,考生可按照大纲要求进行相关知识的学习,获取技能,成为专业人才。
考试方式:一年四届 (3、6、9、12月的最后一个周六),线下统考,上机答题。
考试题型:客观选择题(单选60题+多选30题+内容相关10题)
案例实操题(1题)
考试时间:90分钟(客观选择题),120分钟(案例实操题),共210分钟
考试成绩:分为A、B、C、D四个层次,A、B、C为通过考试,D为不通过
考试要求:客观选择题为闭卷上机答题,无需携带计算器及其他考试无关用品。
案例实操题考生须自行携带电脑操作(安装好带有数据挖掘功能的软件如:PYTHON、SQL、SPSS
MODELER、R、SAS、WEKA等,进行案例操作分析。案例数据将统一提供CSV文件)。
针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。
1.领会:考生能够了解规定的知识点,并能够了解规定知识点的内涵与外延,了解其内容要点之间的区别与联系,并能做出正确的阐述、解释和说明。
2.熟知:考生须掌握知识的要点,并能够正确理解和记忆相关理论方法,能够根据不同要求,做出逻辑严密的解释、说明和阐述。此部分为考试的重点部分。
3.应用:考生须学会将知识点落地实践,并能够结合相关工具进行商业应用,能够根据具体要求,给出问题的具体实施流程和策略。
a.数据挖掘概要(3%)
b.数据挖掘方法论(3%)
c.基础数据挖掘技术(4%)
d.进阶数据挖掘技术(5%)
a.高级数据处理(5%)
b.特征工程概要(2%)
c.特征建构(3%)
d.特征选择(5%)
e.特征转换(5%)
f.特征学习(5%)
a.自然语言处理概要(占比2%)
b.分词与词性标注(占比4%)
c.文本挖掘概要(占比2%)
d.关键词提取(占比4%)
e.文本非结构数据转结构(占比8%)
a.朴素贝叶斯(4%)
b.决策树(分类树及回归树)(5%)
d.支持向量机(4%)
e.集成方法(5%)
f.聚类分析(5%)
g.关联规则(4%)
h.序列模式(3%)
i.模型评估(5%)
a.自动机器学习
b.类别不平衡问题
c.半监督学习
d.模型优化
说明:推荐学习书目中,部分书籍结合软件,考试中客观选择题部分不考查软件操作使用,案例实操部分需要考生运用相关软件进行建模分析,考生可根据自身需求选择性学习。参考书目不需全部学完,根据考纲知识点进行针对性学习即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12