CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的资格认证,旨在提升用户数字技能,助力企业数字化转型,推动行业数字化发展。「CDA人才考核标准」是面向全行业数据相关岗位的一套科学化、专业化、国际化的人才技能准则,CDA考试大纲规定并明确了数据分析师认证考试的具体范围、内容和知识点,考生可按照大纲要求进行相关知识的学习,获取技能,成为专业人才。
考试方式:线下考试,上机答题
考试题型:客观选择题(单选100题+多选20题+内容相关15题+案例分析15题)
考试时间:150分钟
考试成绩:分为A、B、C、D四个层次,A、B、C为通过考试,D为不通过
考试要求:闭卷上机答题,无需携带计算器及其他考试无关用品
针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。
1.领会:考生能够了解规定的知识点,并能够了解规定知识点的内涵与外延,了解其内容要点之间的区别与联系,并能做出正确的阐述、解释和说明。
2.熟知:考生须掌握知识的要点,并能够正确理解和记忆相关理论方法,能够根据不同要求,做出逻辑严密的解释、说明和阐述。此部分为考试的重点部分。
3.应用:考生须学会将知识点落地实践,并能够结合相关工具进行商业应用,能够根据具体要求,给出问题的具体实施流程和策略。
a.数据采集方法(占比2%)
b.市场调研和数据录入
市场调研流程(占比1%)
样本选取(占比2%)
问卷设计及录入(占比2%)
c.数据探索与可视化(占比2%)
d.数据预处理方法(占比3%)
a.数据分类(占比1%)
b.关系模型(占比1%)
a.标签体系设计原理(占比3%)
b.标签的加工方式(占比1%)
c.用户画像(占比1%)
a.抽样估计(占比5%)
b.假设检验(占比5%)
c.方差分析(占比5%)
d.一元线性回归分析(占比10%)
a.主成分分析法(占比6%)、因子分析法(占比4%)
b.多元回归分析法
多元线性回归(占比10%)
逻辑回归(占比10%)
c.聚类分析法
系统聚类法(占比3%)
K-Means聚类法(占比2%)
d.时间序列(占比5%)
a.业务探查与问题定位(占比3%)
b.问题诊断
近因分析(占比5%)
根本原因分析(占比2%)
c.业务策略优化和指导
业务目标设定原则(占比1%)
知识库,策略库,流程分析(占比2%)
线性和整数规划(占比1%)
二次优化(占比1%)
说明:推荐学习书目中,部分书籍结合软件,但考试中不考查软件操作使用,考生可根据自身需求选择性学习。参考书目不需全部学完,根据考纲知识点进行针对性学习即可。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28