
探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。
常用的第三方库
数据科学库
常用函数
数据简略观测
数据总览
数据检测
缺失值检测
异常值检测
预测分布
总体分布概况:
很多模型假设数据服从正态分布,数据整体服从正态分布,样本均值和方差则相互独立。当样本不服从正态分布时,可以做如下转换:
查看skeness 和kurtosis
预测值的具体频数
当某范围预测值很少时,可将其当作异常值处理填充或删除。若频数很失常,需对数据进行处理,例如进行log变换,使数据分布较均匀,可据处理后的数据进行预测,这也是预测问题常用的技巧。
特征分析
数字特征
类别特征
数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。俗话说:garbage in, garbage out。分析完数据后,特征工程前,必不可少的步骤是对数据进行清洗。
数据清洗作用是利用有关技术如数理统计、数据挖掘或预定义的清理规则将脏数据转化为满足数据质量要求的数据。主要包括缺失值处理、异常值处理、数据分桶、特征归一化/标准化等流程。
缺失值处理
关于缺失值处理的方式, 有几种情况:
异常值处理
常用的异常值处理操作包括BOX-COX转换(处理有偏分布),箱线图分析删除异常值, 长尾截断等方式, 当然这些操作一般都是处理数值型的数据。
数据分桶
连续值经常离散化或者分离成“箱子”进行分析, 为什么要做数据分桶呢?
当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性。现在介绍数据分桶的方式有:
数据转换的方式有:
特征工程指的是把原始数据转变为模型训练数据的过程,目的是获取更好的训练数据特征。特征工程能使得模型的性能得到提升,有时甚至在简单的模型上也能取得不错的效果。
特征构造
特征选择
特征选择主要有两个功能:
通常来说,从两个方面考虑来选择特征:
数据特征维度太高,首先会导致计算很麻烦,其次增加了问题的复杂程度,分析起来也不方便。但盲目减少数据的特征会损失掉数据包含的关键信息,容易产生错误的结论,对分析不利。
PCA降维方法,既可以减少需要分析的指标,而且尽可能多的保持了原来数据的信息。
但要注意一点, 特征选择是从已存在的特征中选取携带信息最多的,选完之后的特征依然具有可解释性,而PCA,将已存在的特征压缩,降维完毕后不是原来特征的任何一个,也就是PCA降维之后的特征我们根本不知道什么含义了。
特征工程也好,数据清洗也罢,都是为最终的模型来服务的,模型的建立和调参决定了最终的结果。模型的选择决定结果的上限, 如何更好的去达到模型上限取决于模型的调参。
建模的过程需要我们对常见的线性模型、非线性模型有基础的了解。模型构建完成后,需要掌握一定的模型性能验证的方法和技巧。同时,还需要掌握贪心调参、网格调参、贝叶斯调参等调参方法。
回归分析是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型。以便通过观察特定变量(自变量),来预测研究者感兴趣的变量(因变量)
这种分布会使得采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。
欠拟合:训练的模型在训练集上面的表现很差,在验证集上面的表现也很差。即训练误差和泛化误差都很大。原因:
过拟合:模型的训练误差远小于它在测试数据集上的误差。即训练误差不错,但是泛化误差比训练误差相差太多。原因:
由此引出模型复杂度概念模型中的参数,一个简单的二元线性的函数只有两个权重,而多元的复杂的函数的权重可能会什么上百上千个。
模型复杂度太低(参数过少),模型学习得太少,就难以训练出有效的模型,便会出现欠拟合。模型复杂度太高(参数很多),即模型可训练空间很大,容易学习过度,甚至于也将噪声数据学习了,便会出现过拟合。
损失函数后面会添加一个额外项,称作 L1正则化 和 L2正则化,或者 L1范数和 L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。
正则化说明:
正则化作用:
调参方法
贪心调参 (坐标下降)坐标下降法是一类优化算法,其最大的优势在于不用计算待优化的目标函数的梯度。与坐标下降法不同的是,不循环使用各个参数进行调整,而是贪心地选取了对整体模型性能影响最大的参数。参数对整体模型性能的影响力是动态变化的,故每一轮坐标选取的过程中,这种方法在对每个坐标的下降方向进行一次直线搜索(line search)网格调参GridSearchCV作用是在指定的范围内可以自动调参,只需将参数输入即可得到最优化的结果和参数。相对于人工调参更省时省力,相对于for循环方法更简洁灵活,不易出错。贝叶斯调参贝叶斯优化通过基于目标函数的过去评估结果建立替代函数(概率模型),来找到最小化目标函数的值。贝叶斯方法与随机或网格搜索的不同之处在于,它在尝试下一组超参数时,会参考之前的评估结果,因此可以省去很多无用功。超参数的评估代价很大,因为它要求使用待评估的超参数训练一遍模型,而许多深度学习模型动则几个小时几天才能完成训练,并评估模型,因此耗费巨大。贝叶斯调参发使用不断更新的概率模型,通过推断过去的结果来“集中”有希望的超参数。
这里给出一个模型可调参数及范围选取的参考:
通过融合多个不同的模型,可能提升机器学习的性能。这一方法在各种机器学习比赛中广泛应用, 也是在比赛的攻坚时刻冲刺Top的关键。而融合模型往往又可以从模型结果,模型自身,样本集等不同的角度进行融合。
模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式
1. 简单加权融合:
2. stacking/blending:
3. boosting/bagging:
简单算术平均法
Averaging方法就多个模型预测的结果进行平均。这种方法既可以用于回归问题,也可以用于对分类问题的概率进行平均。
加权算术平均法
这种方法是平均法的扩展。考虑不同模型的能力不同,对最终结果的贡献也有差异,需要用权重来表征不同模型的重要性importance。
投票法
假设对于一个二分类问题,有3个基础模型,现在我们可以在这些基学习器的基础上得到一个投票的分类器,把票数最多的类作为我们要预测的类别。
堆叠法(Stacking)
stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。对不同模型预测的结果再进行建模。
把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。
其基本思想是:增加前一个基学习器在训练训练过程中预测错误样本的权重,使得后续基学习器更加关注这些打标错误的训练样本,尽可能纠正这些错误,一直向下串行直至产生需要的T个基学习器,Boosting最终对这T个学习器进行加权结合,产生学习器委员会。
下面给出加州大学欧文分校Alex Ihler教授的两页PPT:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29