数据分析师为什么牛 ”数据分析师作为一个出现时间不长的工种,大数据时代下,成为螺丝钉还是成为龙头,需要尝试新的可能。” 数据分析师的职业规划 数据分析师手中拥有一座宝藏。作为滴滴出行数据分析团 ...
2016-10-24电商企业运营数据分析实施步骤 数据分析实施步骤主要由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。 电商企业运营数据分析实施步骤: 一、识别信息需求 识别信息需求能为收集 ...
2016-10-24数据分析技术:数据差异的显著性检验 数据差异的显著性检验是数据分析的重要技术之一。然而,如何正确选择检验方法是很多初学者困惑和容易出现错误的地方。下面为大家总结一下数据差异显著性检验的方法及适用 ...
2016-10-24数据分析师的情怀 | 一个大数据工作者的感悟 谈起大数据,知晓它的人,都会说,势头猛,高科技,待遇好。城外的人,迫不及待想一头扎进来。熟不知,城里的大部分人却在坐以待毙,茫然无方向,难产。 前天晚 ...
2016-10-24数据挖掘、数据分析与数据统计有什么区别 简单说:数据挖掘就是从海量数据中找到隐藏的规则,数据分析一般要分析的目标比较明确,数据统计则是单纯的使用样本来推断总体。 主要区别: “数据分析”的重点是 ...
2016-10-23数据分析必备!4大思维方式 数据本身没有价值,合理的分析利用之后才能提炼有用信息。 数据分析说白了就是将特定范围的数据进行不同维度的组合,展示关键指标的状态,找到问题,分解原因,制定方案。从数据 ...
2016-10-23如何使用Excel数据分析功能?Excel数据分析使用方法 如何使用Excel数据分析功能?众所周知,Excel表格是一款非常不错的办公软件,使用这款软件可以帮助用户存储一些数据,同时还可以对数据进行分析,不过想要让E ...
2016-10-23数据分析没效果,是因为缺少这4种提升! 在数据分析过程中,会遇到各种瓶颈,除去自身技能,分析的内容本身还有很多讲究,你的很多分析反映不出实质,解决不了问题,往往是缺少以下四种提升。 深度 深度是 ...
2016-10-23如何快速做一个简单的数据分析 不管是已经从事或者即将入门数据分析工作的你,可能都曾经历过数据分析到底做什么?数据分析前途怎么样?怎么学习数据分析?如何提升分析能力?等这样的困惑。 我也曾有过这样 ...
2016-10-23基于数据挖掘的汽车行业客户行为特征分析 以汽车行业为载体,通过对具体业务需求的理解与梳理,转化为数据分析问题,进行数据建模,将输出的结果应用到业务中,对业务提供支持(建议,预测,判断等等)。当然 ...
2016-10-23数据挖掘语言及其标准化研究进展 数据挖掘包含范围广泛的任务,从数据描述到挖掘关联规则、数据分类和演化分析,所以,设计一个全面的数据挖掘语言是富有挑战性的,因为每个任务有不同的要求。一个设计有效的数 ...
2016-10-22数据分析这点事:如何看懂数据 用好数据 先声明一下,按照传统的定义,我还真不是数据分析高手,各种关联算法,只会最简单的一种(话说不少场合还算管用);各种挖掘技术,基本上一窍不通;各种牛逼的数据分析 ...
2016-10-22数据运营的三重门,你可知晓 通过数据分析的结果来驱动运营方式,最终帮助运营者乃至企业决策者凭借数据敏感性和逻辑分析能力指导业务实践。 近年来,“大数据”日益成为国家基础性战略资源,其所蕴藏的巨大 ...
2016-10-22如何成功做一个大数据项目 说有一个大数据分析师,他上了一架飞机,上飞机不久,广播里就传来机长的声音说,“对不起大家,我们飞机刚刚有一个引擎不工作了,但是不要着急,我们还可以用其它三个引擎飞,只是我 ...
2016-10-22SPSS单一样本的T检验 如果已知总体均数,进行样本均数与总体均数之间的差异显著性检验属于单一样本的T检验。在SPSS中,单一样本的T检验由“One-Sample T Test”过程来完成。 [例子] 有一种新型农药防 ...
2016-10-22数据分析如何帮产品实现用户增长 腾讯深度报告,2016年,75%的消费者仍计划保持或增加消费支出。随着人们收入水平的提升,消费者愿意花费更高的价格来购买提高生活品质的产品与服务。对于商家而言,他们拥有多 ...
2016-10-21数据分析那么重要,不会怎么办 我们看数据时,很多时候会用直觉:判断哪里错误,哪里可以改进。其实直觉说白了就是经验,数据看多了,也就有了直觉(经验)。但对于一个新人来说,经验的确无法速成,直觉不能复 ...
2016-10-20深入浅出之数据分析四步曲 数据分析四步骤 确定 开始分析之前需要拿到足够的背景信息,更重要的是要和对方一起明确你们共同想要解决的问题/想要验证的假设,更更重要的是确定交付的内容、形式、期限以及 ...
2016-10-20用Excel做回归分析的详细步骤 一、什么是回归分析法 “回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变 ...
2016-10-20如何成为一名大数据工程师 大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。 这群人在国外被叫做数据科学家(Data Scienti ...
2016-10-20在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29