数据科学家日常工作的15项原则 作为一个数据科学家,我为我的日常工作总结开发出15项原则,这些是我本人也遵循的: 1、不要用数据说谎或吹牛: 对经验性证据要诚实坦率。最重要的是不要用数据自欺欺人。 2 ...
2016-10-14数据分析相关笑话,只有数据人才懂 1、“我是搞数据分析的,学会了如何从DW中用SQL对数据ETL并建立了Cube。然后算啊算啊算,得出结论:今年2月份营业收入远远小于其它月份。我试图用spss、sas中的数据挖掘模型 ...
2016-10-14数据科学有利于数据挖掘,数据分析 “数据科学家”这一术语尚未失去吸引力,据Metamarkets公司的共同创始人及首席技术官Michael Driscoll说。Metamarkets是一家为数字、社交和移动媒体公司提供预测分析的创业公 ...
2016-10-13管理者常犯的4个关于数据分析的错误 有关数据和数据分析的高谈阔论比比皆是。不断有人告诫各大公司要规划恰当战略来收集分析大数据,并警告不这么做可能带来的不良后果。像《华尔街日报》近日就提到公司享有客 ...
2016-10-13分分合合之数据科学家浅析 随着国家大数据行动计划的发布,大数据相关的新词频出,其中“数据科学家”一词更是横空出世貌似高不可攀。那我们来看看这个所谓的数据科学家到底是新瓶装旧酒还是新瓶装新酒? ...
2016-10-13谈一谈到底该如何学习数据分析 看到不止一个QQ群里面的有很多人都问过如何学好数据分析,这个一个比较大的命题,很难一两句话弄说的明了,所以这个的问题很难在QQ群里得到一个满意的答案。好吧,那我就以一个这 ...
2016-10-13数据分析师、数据科学家常见的77个面试问题 随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数 ...
2016-10-13学习R的三种境界,你达到了吗 王国维在《人间词话》中将读书分为了三种境界:\"古今之成大事业、大学问者,必经过三种之境界:\'昨夜西风凋碧树,独上高楼,望尽天涯路\'。此第一境也。\'衣带渐宽终不悔,为伊 ...
2016-10-13机器学习、大数据等岗位面试时遇到的各种问题总结 自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理/机器 ...
2016-10-12R语言实战:R语言介绍 我们分析数据的方式在近年来发生了令人瞩目的变化。随着个人电脑和互联网的出现,可获取的数据量有了非常可观的增长。 商业公司拥有TB级的客户交易数据,政府、学术团体以及私立研究机 ...
2016-10-12R语言实现交通行业事故案例之黑点确定 浅谈道路黑点定义,定义黑点道路为历史发生事故起数较多和近期发生事故明显增多两种道路,并且用简易事故、一般事故、较大事故、特大事故确定当前发生事故的严重程度,即 ...
2016-10-12R语言ARIMA预测交通流量 交通流量预测分析研究是智能运输系统的核心研究内容之一,实例使用ARIMA(p,d,q)-差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序 ...
2016-10-12R语言数据分析实战:数据结构(2) 4、数据框 由于不同的列可以包含不同模式(数值型、字符型等)的数据,数据框的概念较矩阵来说更为一般。它与你通常在SAS、SPSS和Stata中看到的数据集类似。数据框将是你 ...
2016-10-12R语言数据分析实战:数据结构(1) 一、数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量。表2-1提供了一个假想的病例数据集。 不同的行业对于数据集的行和列叫法不同。 ...
2016-10-12数据挖掘与数据分析梳理 一、数据挖掘和数据分析概述 数据挖掘和数据分析都是从数据中提取一些有价值的信息,二者有很多联系,但是二者的侧重点和实现手法有所区分。 数据挖掘和数据分析的不同之处: ...
2016-10-11统计学中的基本概念 1、描述统计与推断统计 描述统计(Descriptive Statistics):用表格、图形和数字来概括、显示数据特征的统计方法。 例1:2005年我国出生人口性别比(男:女)已经升高到119.92,与正 ...
2016-10-11你应该知道的7种类型的回归技术! 回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回 ...
2016-10-11数据分析师如何打磨自己的业务深度 如何打磨自己的业务深度。 对于初级的数据分析师有条件的可以考虑到业务部门实习一段时间,销售、市场、营运部门都可以待一段时间,这对提高业务理解度会有直接的帮助的。 ...
2016-10-11一大波Excel日期函数来袭,赶快收藏备用啦 日期就是一组特殊的序列值。如果在单元格中输入1,然后设置成日期格式,看看是不是变成了1900年1月1日? 日期函数主要用于计算星期、工龄、年龄、账龄、利息, ...
2016-10-11聚类分析实战解析与总结 聚类分析是没有给定划分类别的情况下,根据样本相似度进行样本分组的一种方法,是一种非监督的学习算法。聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度划分为若干组 ...
2016-10-10PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08