
我们分析数据的方式在近年来发生了令人瞩目的变化。随着个人电脑和互联网的出现,可获取的数据量有了非常可观的增长。
商业公司拥有TB级的客户交易数据,政府、学术团体以及私立研究机构同样拥有各类研究课题的大量档案和调查数据。从这些海量数据中收集信息(更不用说发现规律)已经成为了一项产业。同时,如何以容易让人理解和消化的方式呈现这些信息也日益富有挑战性。
数据分析科学(统计学、计量心理学、计量经济学、机器学习)的发展一直与数据的爆炸式增长保持同步。远在个人电脑和互联网发端之前,学术研究人员就已经开发出了很多新的统计方法,并将其研究成果以论文的形式发表在专业期刊上。这些方法可能需要很多年才能够被程序员改写并整合到广泛用于数据分析的统计软件中。而如今,新的方法层出不穷。统计研究者经常在人们常访问的网站上发表新方法和改进的方法,并附上相应的实现代码。
个人电脑的出现还对我们分析数据的方式产生了另外一种影响。当数据分析需要在大型机上完成的时候,机时非常宝贵难求。分析师们会小心地设定可能用到的所有参数和选项,再让计算机执行计算。程序运行完毕后,输出的结果可能长达几十甚至几百页。之后,分析师会仔细筛查整个输出,去芜存菁。许多受欢迎的统计软件正是在这个时期开发出来的。直到现在,统计软件依然在一定程度上沿袭了这种处理方式。
随着个人电脑将计算变得廉价且便捷,现代数据分析的方式发生了变化。与过去一次性设置好完整的数据分析过程不同,现在这个过程已经变得高度交互化,每一阶段的输出都可以充当下一阶段的输入。一个典型的数据分析过程的示例见图1-1。在任何时刻,这个循环都可能在进行着数据变换、缺失值插补、变量增加或删除,甚至重新执行整个过程。当分析师认为他已经深入地理解了数据,并且可以回答所有能够回答的相关问题时,这个过程即告结束。
个人电脑的出现(特别是高分辨率显示器的普及)同样对理解和呈现分析结果产生了重大影响。一图胜千言,绝对如此!人类非常擅长通过视觉获取有用信息。现代数据分析也日益依赖通过呈现图形来揭示含义和表达结果。
总而言之,今天的数据分析人士需要从广泛的数据源(数据库管理系统、文本文件、统计软件以及电子表格)获取数据、将数据片段融合到一起、对数据做清理和标注、用最新的方法进行分析、以有意义有吸引力的图形化方式展示结果,最后将结果整合成令人感兴趣的报告并向利益相关者和公众发布。通过下面的介绍你会看到, R正是一个适合完成以上目标的理想而又功能全面的软件。
1.1 为何要使用 R语言?
与起源于贝尔实验室的S语言类似, R语言也是一种为统计计算和绘图而生的语言和环境,它是一套开源的数据分析解决方案,由一个庞大且活跃的全球性研究型社区维护。但是,市面上也有许多其他流行的统计和制图软件,如Microsoft Excel、 SAS、 IBM SPSS、 Stata以及Minitab。为何偏偏要选择R?
R有着非常多值得推荐的特性。
多数商业统计软件价格不菲,投入成千上万美元都是可能的。而R是免费的!如果你是一位教师或一名学生,好处显而易见。
R语言是一个全面的统计研究平台,提供了各式各样的数据分析技术。几乎任何类型的数据分析工作皆可在R中完成。
R语言拥有顶尖水准的制图功能。如果希望复杂数据可视化,那么R拥有最全面且最强大的一系列可用功能。
R语言是一个可进行交互式数据分析和探索的强大平台。其核心设计理念就是支持图1-1中所概述的分析方法。举例来说,任意一个分析步骤的结果均可被轻松保存、操作,并作为进一步分析的输入。
从多个数据源获取并将数据转化为可用的形式,可能是一个富有挑战性的议题。 R可以轻松地从各种类型的数据源导入数据,包括文本文件、数据库管理系统、统计软件,乃至专门的数据仓库。它同样可以将数据输出并写入到这些系统中。
R是一个无与伦比的平台,在其上可使用一种简单而直接的方式编写新的统计方法。它易于扩展,并为快速编程实现新方法提供了一套十分自然的语言。
R囊括了在其他软件中尚不可用的、先进的统计计算例程。事实上,新方法的更新速度是以周来计算的。如果你是一位SAS用户,想象一下每隔几天就获得一个新SAS过程的情景。
如果你不想学习一门新的语言,有各式各样的GUI(Graphical User Interface,图形用户界面)工具通过菜单和对话框提供了与R语言同等的功能。
R可运行于多种平台之上,包括Windows、 UNIX和Mac OS X。这基本上意味着它可以运行于你所能拥有的任何计算机上。(本人曾在偶然间看到过在iPhone上安装R的教程,让人佩服,但这也许不是一个好主意。)
图1-2是展示R语言制图功能的一个示例。使用一行代码做出的这张图,说明了蓝领工作、白领工作和专业工作在收入、受教育程度以及职业声望方面的关系。从专业角度讲,这是一幅使用不同的颜色和符号表示不同分组的散点图矩阵,带有两类拟合曲线(线性回归和局部加权回归) 、置信椭圆以及两种对密度的展示(核密度估计和轴须图)。另外,在每个散点图中都自动标出了值最大的离群点。如果这些术语对你来说很陌生也不必担心。我们将在后续各章中陆续谈及它们。这里请暂且相信我,它们真的非常酷。(搞统计的人读到这里时估计已经垂涎三尺了。)图1-2主要表明了以下几点。
受教育程度(education)、收入(income)、职业声望(prestige)呈线性相关。
就总体而言,蓝领工作者有着更低的受教育程度、收入和职业声望;反之,专业工作者有着更高的受教育程度、收入和职业声望。白领工作者介于两者之间。
有趣的例外是,铁路工程师(RR.engineer)的受教育程度较低,但收入较高,而牧师(minister)的职业声望高,收入却较低。
受教育程度和职业声望(较轻微地)呈现双峰分布,高值和低值数据多于中间的数据。
重要的是, R能够让你以一种简单而直接的方式创建优雅、信息丰富、高度定制化的图形。而使用其他统计语言创建类似的图形不仅费时费力,而且可能根本无法做到。
可惜的是, R语言的学习曲线较为陡峭。因为它的功能非常丰富,所以文档和帮助文件也相当多。另外,由于许多功能都是由独立贡献者编写的可选模块提供的,这些文档可能比较零散而且很难找到。事实上,要掌握R的所有功能,可以说是一项挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28