京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言实现交通行业事故案例之黑点确定
浅谈道路黑点定义,定义黑点道路为历史发生事故起数较多和近期发生事故明显增多两种道路,并且用简易事故、一般事故、较大事故、特大事故确定当前发生事故的严重程度,即用当量事故数表示,事故越严重,则当事事故数越大,当量事故数定义:
1、历史事故较多道路
通过对各个道路历史数据的分析,找出历史发生事故频率较大的道路作为黑点道路,对于经常发生事故的道路属于此类。如,取所有道路三年内的当量事故数作为历史数据,找出当量事故数较大的道路作为预定黑点道路;
2、近期发生事故遽增道路
分析出近期时段较以往事故发生明显增多道路作为预定黑点道路,这样可以找出历史发生事故很少,但是最近明显发生了很多事故的道路。如,平时最多发生事故起数为1起的事故,近一个月连续发生了3起,则同比增长了200%,则此类道路可作为预定黑点道路。
3、预定黑点道路去重
对1和2分析出的预定黑点道路进行合并,找出所有预定事故黑点道路,因为历史发生事故较多道路也可能近期突然发生事故数增多,也属于近期发生事故遽增道路。
针对确定的预定黑点道路,分别运用聚类算法,找出当前道路上事故发生较密集的各个区域(比如,使用密度聚类算法),作为事故黑点区域。地图展现时只针对发生较密指定半径区域为一个事故黑点区(一条道路有可能有个黑点区域),避免地图展现时整体道路作为一个黑点。
根据步骤二分析的事故黑点区域,给定区域中心坐标和半径在地图上展现,然后用户可以标注当前黑点区域的具体位置。
1、连接Oracle数据库,并读取所需字段
2、分析历史事故发生较多道路,得到结果集Res
3、分析近期发生事故遽增道路Res2
4、预定黑点道路去重,得到结果集Res,并入库
5、黑点道路上事故发生较密区域查找,使用密度聚类算法DBSCAN
附DBSCAN:
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。DBSCAN自动地确定簇个数,而对于K-means,簇个数需要作为参数指定。然而,DBSCAN必须指定另外两个参数:Eps(邻域半径)和MinPts(最少点数)。
DBSCAN中的几个定义:
Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;
核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;
直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达。
密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达。
密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联。
可以发现,密度可达是直接密度可达的传递闭包,并且这种关系是非对称的。密度相连是对称关系。DBSCAN目的是找到密度相连对象的最大集合。
详细算法描述参考度娘
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05