京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习、大数据等岗位面试时遇到的各种问题总结
自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理/机器学习算法工程师,或简称算法工程师,还有的称为搜索/推荐算法工程师,甚至有的并入后台工程师的范畴,视岗位具体要求而定。
自己参与面试的提供算法岗位的公司有 BAT、小米、360、飞维美地、宜信、猿题库 等,根据业务的不同,岗位职责大概分为:
平台搭建类
数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能还需要底层开发、并行计算、分布式计算等方面的知识;
算法研究类
文本挖掘,如领域知识图谱构建、垃圾短信过滤等;
推荐,广告推荐、APP 推荐、题目推荐、新闻推荐等;
排序,搜索结果排序、广告排序等;
广告投放效果分析;
互联网信用评价;
图像识别、理解。
数据挖掘类
商业智能,如统计报表;
用户体验分析,预测流失用户。
以上是根据本人求职季有限的接触所做的总结。有的应用方向比较成熟,业界有足够的技术积累,比如搜索、推荐,也有的方向还有很多开放性问题等待探索,比如互联网金融、互联网教育。在面试的过程中,一方面要尽力向企业展现自己的能力,另一方面也是在增进对行业发展现状与未来趋势的理解,特别是可以从一些刚起步的企业和团队那里,了解到一些有价值的一手问题。
以下首先介绍面试中遇到的一些真实问题,然后谈一谈答题和面试准备上的建议。
面试问题
你在研究/项目/实习经历中主要用过哪些机器学习/数据挖掘的算法?
基础知识
SVM 的推导,特性?多分类怎么处理?
LR 的推导,特性?
决策树的特性?
GBDT 和 决策森林 的区别?
如何判断函数凸或非凸?
解释对偶的概念。
如何进行特征选择?
介绍卷积神经网络,和 DBN 有什么区别?
采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?
用 EM 算法推导解释 Kmeans。
用过哪些聚类算法,解释密度聚类算法。
聚类算法中的距离度量有哪些?
如何进行实体识别?
解释贝叶斯公式和朴素贝叶斯分类。
写一个 Hadoop 版本的 wordcount。
开放问题
给你公司内部群组的聊天记录,怎样区分出主管和员工?
如何评估网站内容的真实性(针对代刷、作弊类)?
路段平均车速反映了路况,在道路上布控采集车辆速度,如何对路况做出合理估计?采集数据中的异常值如何处理?
如何根据语料计算两个词词义的相似度?
在百度贴吧里发布 APP 广告,问推荐策略?
如何判断自己实现的 LR、Kmeans 算法是否正确?
100亿数字,怎么统计前100大的?
答题思路
用过什么算法?
最好是在项目/实习的大数据场景里用过,比如推荐里用过 CF、LR,分类里用过 SVM、GBDT;
一般用法是什么,是不是自己实现的,有什么比较知名的实现,使用过程中踩过哪些坑;
优缺点分析。
熟悉的算法有哪些?
基础算法要多说,其它算法要挑熟悉程度高的说,不光列举算法,也适当说说应用场合;
面试官和你的研究方向可能不匹配,不过在基础算法上你们还是有很多共同语言的,你说得太高大上可能效果并不好,一方面面试官还是要问基础的,另一方面一旦面试官突发奇想让你给他讲解高大上的内容,而你只是泛泛的了解,那就傻叉了。
用过哪些框架/算法包?
主流的分布式框架如 Hadoop,Spark,Graphlab,Parameter Server 等择一或多使用了解;
通用算法包,如 mahout,scikit,weka 等;
专用算法包,如 opencv,theano,torch7,ICTCLAS 等。
基础知识
对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。
产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
原理推导(最大间隔,软间隔,对偶);
求解方法(随机梯度下降、拟牛顿法等优化算法);
优缺点,相关改进;
和其他基本方法的对比;
个人感觉高频话题是 SVM、LR、决策树(决策森林)和聚类算法,要重点准备;
算法要从以下几个方面来掌握:
产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
原理推导(最大间隔,软间隔,对偶);
求解方法(随机梯度下降、拟牛顿法等优化算法);
优缺点,相关改进;
和其他基本方法的对比;
不能停留在能看懂的程度,还要:
对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。
开放问题
由于问题具有综合性和开放性,所以不仅仅考察对算法的了解,还需要足够的实战经验作基础;
先不要考虑完善性或可实现性,调动你的一切知识储备和经验储备去设计,有多少说多少,想到什么说什么,方案都是在你和面试官讨论的过程里逐步完善的,不过面试官有两种风格:引导你思考考虑不周之处 or 指责你没有考虑到某些情况,遇到后者的话还请注意灵活调整答题策略;
和同学朋友开展讨论,可以从上一节列出的问题开始。
准备建议
基础算法复习两条线
材料阅读 包括经典教材(比如 PRML,模式分类)、网上系列博客,系统梳理基础算法知识;
面试反馈 面试过程中会让你发现自己的薄弱环节和知识盲区,把这些问题记录下来,在下一次面试前搞懂搞透。
除算法知识,还应适当掌握一些系统架构方面的知识,可以从网上分享的阿里、京东、新浪微博等的架构介绍 PPT 入手,也可以从 Hadoop、Spark 等的设计实现切入。
如果真的是以就业为导向就要在平时注意实战经验的积累,在科研项目、实习、比赛(Kaggle,阿里大数据竞赛等)中摸清算法特性、熟悉相关工具与模块的使用。
总结
如今,好多机器学习、数据挖掘的知识都逐渐成为常识,要想在竞争中脱颖而出,就必须做到
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06