
分分合合之数据科学家浅析
随着国家大数据行动计划的发布,大数据相关的新词频出,其中“数据科学家”一词更是横空出世貌似高不可攀。那我们来看看这个所谓的数据科学家到底是新瓶装旧酒还是新瓶装新酒?
让我们来问问度娘,她说“数据科学家”由Natahn Yau在2009年首次提出,其是指采用科学方法、运用数据挖掘工具寻找新的数据洞察的工程师。通过字面定义的解读,我们知道“数据科学家”并非那么高大上,其本质还是一名工程师,一名掌握了各种数据挖掘分析方法和工具的工程师。那问题来了,一名数据挖掘分析工程师在大数据时代怎么就摇身一变成为了“数据科学家”呢?
江湖传言,很多跨国公司以及国内的大型互联网企业等都设立了数据科学家这个岗位,与一般意义上的大数据开发者或商业分析师不同,这个岗位的职责要求掌握多种技能集。
天下大势,分久必合,合久必分。数据科学家无非就是一名特种兵,在大数据时代,经济学家亚当.斯密提出的专业分工模式转变成综合多专业的全面手、特种兵,起了个时髦的名字“数据科学家”。尽管数据科学家的角色与传统意义上的数据分析岗位有重合之处,但二者还是有明显区别的。一名数据分析师能够从历史数据中提取出有用的信息并表达出来,供各层级领导决策使用。而数据科学家必须具备深入洞察,可以借助对大数据技术和机器学习等新技术挖掘出数据中隐藏的模式,挖掘出更深的洞见。他们摆脱了这些传统数据处理模式的束缚。
简而言之,数据科学家=业务分析师+数据工程师,需要具备如下技能:
1.对业务的深刻理解。对于挖掘数据价值来说,必须首先对企业业务流程有充分的了解,这些理解不止建立在业务部门的痛点上,还应该以发展的视角看待业务部门的需求,这样才能发挥数据的真实价值。
2.以数学思维看待数据。学习诸如机器学习、数据挖掘、数据分析和统计学等技能十分重要。数据科学家需要从数学的角度对数据进行解释和分析。
3.熟悉常用工具和技术。不仅是Excel、Tableau这样的工具软件,还要对R、Python等语言甚至类似SQL等数据库查询语言均要有所了解。数据提取、探索和假设检验是数据科学实践的核心。
4.具备很强的计算机科学和软件工程背景。这需要掌握包括Java、C++或算法知识和Hadoop。这些技能将用于利用数据来设计系统架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29