大数据分析的深度与假象 今天听了一个数据分析的培训:数据的深度与假象。也没有听太懂,总结几个点分享下: 1. 数据的含义只有和人的行为联系起来才有意义;比如苹果手机的销量,是因为其主流用户的想法导 ...
2016-10-04建立大数据分析能力需四大要素 如今,企业都嗅到大数据带来的巨大价值,纷纷发力大数据领域,其中,建立大数据分析能力,是企业运用大数据的关键环节。领先的企业主要从四个方面入手建立自己的大数据分析能力: ...
2016-10-03数据分析工作已经成为四分之三企业的共识 现在有关大数据的讨论非常多。IBM的商业价值研究院和牛津大学的塞德商学院,做了一个全球大数据的调研报告。采访了全球1100多家大型企业和机构的负责人。从这个调研报 ...
2016-10-03大数据分析:描述型、预测型和规定型 有什么可以区别这三种主要类型的分析呢?一位数据科学家解释了其中的差异。大部分原始数据,特别是大数据,不能在其未加工状态为我们提供很大的价值。当然,通过应用合适的 ...
2016-10-03大数据为生活保驾护航 离不开数据分析 现在,数十亿美元被用于将信息转化为对企业有价值的决策指导,但还有比海量数据更重要的东西——数据分析。关于大数据,不仅仅是有价值的内部信息,而是让大数据和预测有 ...
2016-10-03大数据分析中某些重大要件或技术还不成熟 关于大数据分析,现实的情况是,说得人很多,鼓吹其神奇价值的喧嚣声浪很高,却鲜见其实际运用得法的模式和方法。造成这种窘境的原因无外乎有二:一是对于大数据分析的 ...
2016-10-03失去大数据分析 O2O会偏离本质 O2O概念,自诞生以来就受到业界广泛关注如今,O2O已经达到风生水起的阶段,在这个规程中,O2O也在不断变换新的玩法。有平台战略如阿里的手机淘宝,有线下实体合作,平台推进有如 ...
2016-10-03R语言数据可视化05:散点图 散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本。 同时散点图中常常还会拟合一些直线,以用来表示某些模型。 绘制基本 ...
2016-10-02大数据分析是否成功 五大要素来考量 当前,在大数据时代下,大数据在企业中的应用越来越广泛,与此同时,创新型企业正在研究他们的数据管理策略,以确定在哪些环境下以及怎样发挥云计算解决方案的作用。依托广 ...
2016-10-02测试:你真的适合做数据分析吗? 在大数据时代下,随着大数据分析的深入应用,数据分析师逐渐开始兴起,若想成为真正的数据分析师,或者做数据分析相关的工作,必须要具备相应的特质。 我觉得无论什么工作兴 ...
2016-10-02大数据分析技术如何进化 大数据分析技术现在还是一种传统的技术分析模型,主要还是对数据进行筛选、过滤之后进行分析,随着银行业、保险业,电子商务的不断发展,非结构数据的数量越来越多,增加了大数据分析的 ...
2016-10-02一文看懂数据分析的目的、方法、工具及实际应用 我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享 ...
2016-10-02七个影响数据分析的数据建模错误 如果你有一个目标,想获得所有这些数据的可操作的见解,并一直在收集。那么,你如何确定模型的数据,以便实际上可以获得这些见解,并回答你的业务问题?你的计划。当规划阶段不 ...
2016-10-02数据分析师?程序能做的事还需要你吗? 数据分析在现实中,当一个数据分析师跟别人聊天的时候,经常会被问一些问题: Q:数据分析人员能做什么? A:从纷繁的数据里提炼出有价值的信息并给公司提供支持 ...
2016-10-01大数据时代,什么是数据分析的灵魂 什么是数据?数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。笼统地说,凡是用某种载体记录下来的、能反映自然界和 ...
2016-10-01资深大数据专家??? 最近朋友圈里许多的人在为公司招\"资深大数据\"的人才,不禁思考,什么样的人才是资深的大数据专家?也许这个题目有点大,那就再落地一点,什么样的人才能帮我的公司带入到大数据的领域, ...
2016-10-01多元线性回归实战笔记 R语言中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整。这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及《R语言 ...
2016-10-01使用R进行统计分析—概率计算 R语言中提供了很多概率函数,可以方便的计算事件发生的概率。如二项分布概率函数和泊松分布概率函数。本篇文章介绍如果使用R语言中的这些函数求解事件发生的概率。 概率函 ...
2016-10-01使用R进行统计分析—假设检验 假设检验是统计学中的一种推断方法,用来判断两个样本或总体间的差异是由于抽样误差引起的还是本质差别造成的。R语言中提供了很多假设检验函数,如F检验,t检验和卡方检验等等。本 ...
2016-10-012017校招数据分析岗位笔试/面试知识点 2017校招正在火热的进行,后面会不断更新涉及到的相关知识点。尽管听说今年几个大互联网公司招的人超少,但好像哪一年都说是就业困难,能够进去当然最好,不能进去是不是 ...
2016-09-30在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14