
2017校招数据分析岗位笔试/面试知识点
2017校招正在火热的进行,后面会不断更新涉及到的相关知识点。尽管听说今年几个大互联网公司招的人超少,但好像哪一年都说是就业困难,能够进去当然最好,不能进去是不是应该也抱着好的期望去找自己满意的呢?最近笔试了很多家公司校招的数据分析和数据挖掘岗位,今天(9.18r)晚上做完唯品会的笔试题,才忽然意识过来,不管题目简单也好、难也好,都要去切切实实的去掌握。毕竟不能永远眼高手低,否则最后吃亏的一定是自己。
知识点1:贝叶斯公式
贝叶斯公式:P(B|A)=P(A|B)*P(B)/P(A)
其中P(A)可以展开为
P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)*P(Bn)
(这在很多问答题或者选择题中都有用到)
知识点2:关联规则分析
主要考的是支持度和置信度。
知识点3:聚类
聚类之间类的度量是分距离和相似系数来度量的,距离用来度量样品之间的相似性(K-means聚类,系统聚类中的Q型聚类),相似系数用来度量变量之间的相似性(系统聚类中的R型聚类)。
最常用的是K-means聚类,适用于大样本,但需要事先指定分为K个类。
处理步骤:
1)、从n个数据对象中任意选出k个对象作为初始的聚类中心
2)、计算剩余的各个对象到聚类中心的距离,将它划分给最近的簇
3)、重新计算每一簇的平均值(中心对象)
4)、循环2-3直到每个聚类不再发生变化为止。
系统聚类适用于小样本。
知识点4:分类
有监督就是给的样本都有标签,分类的训练样本必须有标签,所以分类算法都是有监督算法。
监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据,提高泛化能力。
1.朴素贝叶斯
1)基础思想:
对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此分类项属于哪个类别。
2)优点:
方法简单,分类准确率高,速度快,所需估计的参数少,对于缺失数据不敏感。
3)缺点:
假设一个属性对定类的影响独立于其他的属性值,这往往并不成立。(喜欢吃番茄、鸡蛋,却不喜欢吃番茄炒蛋)。
需要知道先验概率。
2.决策树
1)基础思想:
决策树是一种简单但广泛使用的分类器,它通过训练数据构建决策树,对未知的数据进行分类。决策树的每个内部节点表示在一个属性上的测试,每个分枝代表该测试的一个输出,而每个叶结点存放着一个类标号。
在决策树算法中,ID3基于信息增益作为属性选择的度量,C4.5基于信息增益比作为属性选择的度量,CART基于基尼指数作为属性选择的度量。
2)优点 :
不需要任何领域知识或参数假设。
适合高维数据。
简单易于理解。
短时间内处理大量数据,得到可行且效果较好的结果。
3)缺点:
对于各类别样本数量不一致数据,信息增益偏向于那些具有更多数值的特征。
易于过拟合。
忽略属性之间的相关性。
3.支持向量机
1)基础思想:
支持向量机把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类。
2)优点 :
可以解决小样本下机器学习的问题。
提高泛化性能。
可以解决文本分类、文字识别、图像分类等方面仍受欢迎。
避免神经网络结构选择和局部极小的问题。
3)缺点:
缺失数据敏感。
内存消耗大,难以解释。
4.K近邻
1基础思想:
通过计算每个训练样例到待分类样品的距离,取和待分类样品距离最近的K个训练样例,K个样品中哪个类别的训练样例占多数,则待分类样品就属于哪个类别。
2)优点 :
适用于样本容量比较大的分类问题
3)缺点:
计算量太大
对于样本量较小的分类问题,会产生误分。
5.逻辑回归(LR)
1)基础思想:
回归模型中,y是一个定型变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。
2)优点 :
速度快,适合二分类问题。
简单易于理解,直接看到各个特征的权重。
能容易地更新模型吸收新的数据。
3)缺点:
对数据和场景的适应能力有局限,不如决策树算法适应性那么强。
知识点5:分类的评判指标
准确率和召回率广泛用于信息检索和统计分类领域
1)准确率(precision rate):提取出的正确信息条数/提取出的信息条数
2)召回率(recall rate):提取出的正确信息条数/样本中的信息条数
ROC和AUC是评价分类器的指标
3)ROC曲线:
ROC关注两个指标
True Positive Rate ( TPR,真正率 ) = TP / [ TP + FN] ,TPR代表预测为正
实际也为正占总正实例的比例
False Positive Rate( FPR,假正率 ) = FP / [ FP + TN] ,FPR代表预测为正
但实际为负占总负实例的比例
在ROC 空间中,每个点的横坐标是FPR,纵坐标是TPR
4)AUC:AUC(Area Under Curve)
被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而AUC作为数值可以直观的评价分类器的好坏,值越大越好。
5)如何避免过拟合?
过拟合表现在训练数据上的误差非常小,而在测试数据上误差反而增大。其原因一般是模型过于复杂,过分得去拟合数据的噪声和outliers。
常见的解决办法是正则化是:增大数据集,正则化
正则化方法是指在进行目标函数或代价函数优化时,在目标函数或代价函数后面加上一个正则项,一般有L1正则与L2正则等。规则化项的引入,在训练(最小化cost)的过程中,当某一维的特征所对应的权重过大时,而此时模型的预测和真实数据之间距离很小,通过规则化项就可以使整体的cost取较大的值,从而在训练的过程中避免了去选择那些某一维(或几维)特征的权重过大的情况,即过分依赖某一维(或几维)的特征。
L1正则与L2正则区别:
L1:计算绝对值之和,用以产生稀疏性(使参数矩阵中大部分元素变为0),因为它是L0范式的一个最优凸近似,容易优化求解;
L2:计算平方和再开根号,L2范数更多是防止过拟合,并且让优化求解变得稳定很快速;
所以优先使用L2 norm是比较好的选择。
知识点6:二叉树(前、中、后遍历)
(这里的前中后是指的根节点的遍历次序)
1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树;
2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树;
3)后序遍历(LRD),首先遍历左子树,然后访问遍历右子树,最后访问根结点。
知识点7:几种基本排序算法
1)冒泡排序(Bubble Sort)
冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
冒泡排序是稳定的。算法时间复杂度是O(n^2)。
2)插入排序(Insertion Sort)
插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。
直接插入排序是稳定的。算法时间复杂度是O(n^2)。
3)堆排序
堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
堆排序是不稳定的。算法时间复杂度O(nlog n)。
4)快速排序
快速排序是对冒泡排序的一种本质改进。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。
快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。
知识点8:SQL知识
1)左连接、右连接、inner连接,full连接
2)修改表:
alter table 教师 add 奖金 in
talter table 教师 drop 奖金
alter table 教师 rename 奖金 to 津贴
3)表权限的赋予:
4)怎样清空表数据,但不删除表结构
delete from tablename或者delete * from table_nametruncate table tablename
5)外键能不能为空
外键可以为空,为空表示其值还没有确定;
如果不为空,刚必须为主键相同。
知识点9:统计学基础知识
1)四分位极差、左右偏分布、p值
2)方差分析:
用于两个及两个以上样本均数差别的显著性检验,基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定控制变量对研究结果影响力的大小。
3)主成分分析:
是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
4)幸存者偏差:
意思是指,当取得资讯的渠道,仅来自于幸存者时(因为死人不会说话),此资讯可能会存在与实际情况不同的偏差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18