
大数据分析是否成功 五大要素来考量
当前,在大数据时代下,大数据在企业中的应用越来越广泛,与此同时,创新型企业正在研究他们的数据管理策略,以确定在哪些环境下以及怎样发挥云计算解决方案的作用。依托广泛的云计算产品、服务及技术,企业将能够通过新的数据管理模式,打破传统数据管理模式的藩篱,创造新的价值。
基于云的分析就是一个典型的例子。企业管理协会研究显示,越来越多的企业采用混合数据管理模式,利用专用平台管理并调整数据、应用程序及工作负载,以提升数据管理性能,并削减成本。
衡量成功的准则
不同厂商针对各种不同行业提供卓越的分析方案,要调查它们的数据分析能力,需要从以下五大要素入手:
1. 分析性能
首先,为分析用例提供支持需确定信息是否能轻松、快速地从源系统迁移至云端环境。缓慢、复杂的数据采集过程将影响决策速度,而费时费力的数据准备及障碍重重的多级数据载入过程将导致数据管理效率低下,日常运营成本增加。企业还应重视信息存储容量,因为它直接决定业务问题记录的数量。
云端平台不但需实现单用户业务咨询,还需支持多用户进行系统并时查询。无论有多少用户查询系统,云端平台都必须处理信息,并将结果及时返回。等待处理的时间过长导致无法及时获得洞察力,将使查询结果采纳率受到限制,降低投资回报率,甚至无法收到回报。
2. 工作负载的灵活性
与报告编制、重复联机分析处理、特定分析和数据挖掘或高级分析等常见功能相比,支持多个工作负载才是平台灵活性和敏捷性的体现。
平台面向数据库开发,将能够提升其性能和灵活性,以不同的方式支持工作负载。实施基于行的传统策略,能够向记录轻松添加插入及更新内容,但查询需要扫描整个表格时,不利于处理列式布局的表格。部分平台同时搭载基于行和列的技术,可满足分析工作负载的需求。
通过部署Apache Hadoop基础设施及探索分析功能,开发更深层次数据探索能力的大数据战略对计划通过云计算服务优化现有平台功能的企业而言非常重要。
3. 先进的技术
分析项目通常会超出其最初设定的范围。随着更多用户开始使用平台,系统需要满足更多需求,大多数平台容纳的数据量在项目启动一段时间后都超过最初设定的范围。因此,项目初期虽然不急于制定长期计划并提出项目需求,但这些规划和要求却非常重要。
随着数据驱动型项目不断成熟,就需要更多高级功能和特性。而传统系统功能无法满足用户对洞察力的要求时,这种需要尤为明显。扩展云端环境,并加入探索分析等新功能的能力迫切需要具有相应能力的平台。例如,为数据仓库部署Hadoop解决方案将有机会获取高级洞察,而选择使用新功能,将确保项目顺利进展,并创造出意想不到的价值。
4. 专业支持
数据库基础设施开通服务是实施分析解决方案的重要环节,但却不是唯一的环节。为支持业务咨询服务,数据必须使用适当的格式。这将有助于平台为用户高效提供准确的相关信息。
设计并搭建数据库架构可能需要数据建模、数据整合及安全性等方面的高级数据库综合管理技能与经验。部署云端环境的企业经常遇到IT技术难题,新项目开展时始终无法获得相应支持,影响项目实施进度。因此,企业应与解决方案提供商开展合作,通过他们的专业咨询、培训和实施服务,确保项目顺利开展。
5. 企业生态系统
如果企业仅使用一套解决方案,通过它获得的业务洞察只能创造有限的价值。而在更广泛的生态系统中使用分析平台,将能够提升云端平台的效率。
企业充分利用高级分析或探索平台功能,将能够运行高级工作负载,并管理更复杂的项目。大多数解决方案提供商提供合作伙伴网络服务,以扩展平台的能力和功能,为项目创造更多价值。
除此之外,随着工作负载及高级应用程序的不断出现,在选择平台时就应更加重视实际使用情况。各行业致力于推动技术创新的企业都在考察云端分析功能。考虑到厂商提供技术的多样性,选择解决方案时,必须仔细研究评估所有相关标准,确保解决方案能充分发挥性能并带来预期的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01