
使用R进行统计分析—概率计算
R语言中提供了很多概率函数,可以方便的计算事件发生的概率。如二项分布概率函数和泊松分布概率函数。本篇文章介绍如果使用R语言中的这些函数求解事件发生的概率。
概率函数和前缀
R语言中每个概率分布都有对应的函数名称,例如二项分布是binmo,泊松分布是pois,正态分布是norm等等。每个函数都分别有四个不同的前缀,加上前缀可以生成随机数,求解概率和临界值等等。下面是四个前缀对应功能的说明。
r = random = 随机
d= density = 密度
p= probability = 概率
q =quantile = 分位
二项分布概率
假设网站的Landingpage页面中共有20个入口,那么我们预估每个入口被点击的概率为1/20,即P=0.05。(实际情况会复杂一些,每个入口在页面中的位置和展现的形式都 会不一样,一般首屏的入口比后面的入口会获得更多点击,图片和按钮形式的入口比文字类的入口更容易受到关注,导航和焦点图和Action按钮比其他类型的入口更容易 被点击。如有要获得最真实的点击概率,需要参考这个页面中每个入口的历史点击概率数据,这里我们只是假设一种理想情况来说明计算过程。)那么在10000次点击中, 关键按钮获得550次的概率是多少?
先来简单介绍下R语言中的二项分布函数和其中参数的含义,二项分布函数为binom,前缀d表示求密度,前缀p表示求累计概率。参数中X表示实验的成功次数,size表示实验次数,prob表示概率值。在这个例子中成功次数是550,实验次数是10000,概率为0.05。
#点击率0.05的情况下10000次点击中关键按钮恰好被点击550次的概率
> dbinom(x = 550,size = 10000,prob = 0.05)
[1] 0.001362855
经过计算10000次点击中关键按钮恰好被点击550次的概率为0.0013,这只是550次这个事件发生的概率值,并不包含549次点击和551次点击。但实际情况中恰好获得550并不是我们实际的目标。因此我们换一种计算方法再来看下。
#点击率0.05的情况下10000次点击中关键按钮被点击1-550次的概率
> sum(dbinom(x = 1:550,size = 10000,prob = 0.05))
[1] 0.9889429
在成功次数X中从之前的550变成了1:550,然后进行sum求和。获得从1点点击到550次点击的累计概率。从结果中可以看到概率高达0.98。这能说明10000次点击中关键按钮获得550次点击的概率非常高吗?我们能信心满满的说获得550次点击是个高概率事件吗?恐怕还不行。因为这是一个累计概率值,是从1次到550次的汇总。但我们的目标是获得550次或更多的点击,那么550次以下的点击量概率其实是我们不需要的。因此实际的概率值没有这么高。
> pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.9889429
计算积累概率值还有一个更简单的方法就是在二项分布概率函数的前面加前缀p,就可以自动获得550次点击的累计概率值了。结果与前面的方法一致。
#点击率0.05的情况下10000次点击中关键按钮获得500次到550次区间的点击的概率
> sum(dbinom(x = 500:550,size = 10000,prob = 0.05))
[1] 0.4953496
前面两种方法获得的概率值一个太低,一个太高。还有一种方法是只计算某个区间的概率值,这里我们将获得点击的次数限定在500次——550次之间,来求这一区间的概率值。从结果来看10000次点击中关键按钮获得500次——550次点击的概率为0.49。
#点击率0.05的情况下10000次点击中关键按钮分别获得500次到550次点击的概率
> dbinom(x = 500:550,size = 10000,prob = 0.05)
[1] 0.018301669 0.018265138 0.018190454 0.018078155 0.017929014 0.017744025 0.017524393 0.017271524 0.016987006 0.016672594 0.016330195
[12] 0.015961845 0.015569690 0.015155968 0.014722985 0.014273095 0.013808680 0.013332131 0.012845824 0.012352105 0.011853270 0.011351550
[23] 0.010849097 0.010347966 0.009850108 0.009357356 0.008871418 0.008393869 0.007926149 0.007469553 0.007025237 0.006594211 0.006177343
[34] 0.005775361 0.005388857 0.005018291 0.004663995 0.004326183 0.004004957 0.003700313 0.003412150 0.003140280 0.002884435 0.002644275
[45] 0.002419399 0.002209352 0.002013632 0.001831702 0.001662993 0.001506913 0.001362855
以上是点击量500次——到550次分解的概率值,0.49的概率值由以上的各个概率汇总而来。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> sum(dbinom(x = 551:10000,size = 10000,prob = 0.05))
[1] 0.01105708
再来看最开始的问题,10000次点击中关键按钮获得550次点击的概率。550次以下的点击不是我们希望的结果,因此我们再来看下点击量超过550次的概率有多少。从结果 来看获得点击量在551次——10000次的概率仅为0.011,因此获得超过550次以上的点击的概率比较低。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> 1-pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.01105708
由于从0到10000次点击的所有概率为1,因此用1减550次以下的概率值也能获得相同的结果。
泊松分布概率
假设在一次市场活动中,上一个小时中有40个用户注册,那么下一个小时有50个用户注册的概率是多少?
这里需要使用泊松分布概率函数,泊松分布函数是pois,第一个参数x是下一个时间段事件发生的次数,lambda是上一个时间段事件发生的次数。在这个例子中x=50, lambda=40。
#上一小时产生40个注册用户,下一小时产生恰好50个注册用户的概率
> dpois(x =50,lambda=40)
[1] 0.01770702
经过计算,下一个小时恰好有50个注册用户的概率为0.017。与二项分布中的问题一样,0.017是恰好50个用户的概率。不是49个用户也不是51个用户的概率。
#上一小时产生40个注册用户,下一小时产生1-50个注册用户的概率
> sum(dpois(x =1:50,lambda=40))
[1] 0.947372
把下一小时注册用户的数量改为1:50,并进行求和,获得了下一个小时获得1-50个注册用户的累计概率值。这个值有0.94。但我们的目标是50个注册用户,虽然概率很高 但低于50的事件发生并不是我们的目标。
> ppois(q =50,lambda=40)
[1] 0.947372
这是另一种计算方法,把泊松分布函数的前缀换为p,计算50个注册用户的累计概率值,结果与前面的方法一致。
#上一小时产生40个注册用户,下一小时产生40-50个注册用户区间的概率
> sum(dpois(x =40:50,lambda=40))
[1] 0.4684008
前一小时40个注册用户,后一个小时目标50个注册用户,我们来看下下一个小时注册用户是40-50这个区间的概率是多少。经过计算这个区间发生的概率为0.46。
#上一小时产生40个注册用户,下一小时分别产生40-50个注册用户的概率
> dpois(x =40:50,lambda=40)
[1] 0.06294704 0.06141175 0.05848738 0.05440686 0.04946078 0.04396514 0.03823056 0.03253664 0.02711387 0.02213377 0.01770702
这里显示了40-50个注册用户分别的发生概率,0.46的概率值由以上各个概率值汇总计算获得。
#上一小时产生40个注册用户,下一小时产生50个注册用户以上的概率
>1-ppois(q =50,lambda=40)
[1] 0.05262805
最后再来看下下一个小时注册用户数量超过50的概率。用1减去50个用户的累计概率值就是超过50个注册用户发生的概率,计算结果是0.052,因此下一个小时获得超过50个注册用户的概率不高。文章来源:cda数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01