
假设检验是统计学中的一种推断方法,用来判断两个样本或总体间的差异是由于抽样误差引起的还是本质差别造成的。R语言中提供了很多假设检验函数,如F检验,t检验和卡方检验等等。本篇文章介绍如何使用R语言中的这些函数进行假设检验。
二项分布检验
假设一个广告的点击率为0.02,更换新的广告创意后1000次曝光获得了23次点击,新广告在点击率上是否明显优于老广告?
H0:新广告与老广告效果无差异
H1:新广告效果优于老广告
#老广告点击率0.02,新广告1000次广告曝光获得23次点击是否明显优于老广告binom.test(x =23,n = 1000,p = 0.02,alternative ="greater",conf.level = 0.95 )
p-value = 0.2778>0.05,在0.95的置信区间下接受原假设H0。新广告与老广告在点击率上没有显著差异。
#1000次访问0.02点击率下差异显著的临界值qbinom(p = 0.95,size = 1000,prob = 0.02)
[1] 28
新广告在1000次广告曝光中点击量需要提升到28次以上才能明显优于老广告的效果。
假设一次市场推广活动中前一个小时有50人注册,后一个小时有60人注册,后一小时的注册人数是否明显高于前一小时?
H0:前一小时与后一小时注册人数无差异
H1:后一小时注册用户数量高于前一小时
#上一小时50人注册,下一小时60人注册,后一小时是否显著高于前一小时poisson.test(x = 60,T = 50,alternative ="greater",conf.level = 0.95)
p-value = 0.09227>0.05,在0.95的置信区间下接受原假设H0,后一小时注册人数与前一小时无差异。
#与上一小时50人注册差异显著的临界值
qpois(0.95,lambda=50)
[1] 62
后一小时的注册用户数需要提升到62以上才能明显高于前一小时的注册用户数。
假设某流量渠道的目标是每日带来150个咨询,在过去的一周带来的咨询用户数量分别为229,164,121,137,145,127,123,我们是否能认为该渠道已经达到目标,即每日的平均咨询量大于150?
这里使用单样本t检验,首先建立假设。
H0:每日平均咨询量不大于153,未达到目标。
H1:每日平均咨询量大于153,达到目标。
#将过去一周咨询用户数量赋给XX=c(229,164,121,137,155,127,143)#计算过去一周咨询量的均值mean(X)
[1] 153.7143
#过去一周咨询用户数量是否达到目标
t.test(X,alternative ="greater",mu=153,conf.level = 0.95)
p-value = 0.4801>0.05,在0.95的置信区间下接受原假设H0,流量渠道的咨询量没有达到目标。
假设两个流量渠道在过去的一周分布为网站带来咨询用户,这两个流量渠道带来的咨询用户数量是否有显著差异?
这里使用双样本t检验,首先建立假设。
H0:两个流量渠道带来的咨询用户数量没有显著差异。
H1:两个流量渠道带来的咨询用户数量存在有显著差异。
#流量渠道1带来的咨询用户数量赋值给
XX=c(229,164,121,137,155,127,143)
#流量渠道2带来的咨询用户数量赋值给
YY=c(175,120,187,144,117,184,135)
进行双样本t检验之前先进行方差检验,确定两组样本方差是否相同。 H0:两个总体方差相同 H1:两个总体方差不同
#方差检验,确定两个流量渠道的咨询量是否相同
var.test(x = X,y = Y,conf.level =0.95)
p-value = 0.6469>0.05,在0.95的置信区间下接受原假设H0,两个总体方差相同。进行等方差t检验。
#等方差t检验,两个流量渠道带来的咨询用户数量是否有差异
t.test(X,Y,var.equal=TRUE,alternative ="two.sided")
p-value = 0.9125>0.05,接受原假设H0,在0.95的置信区间下两个流量渠道的咨询用户量没有显著差异。
假设网站对咨询流程进行了优化并进行了测试,那么改版后的效果是否明显优于改版前?
这里使用成对t检验,首先建立假设。
H0:改版后的效果与改版前无差异
H1:改版后的效果明显优于改版前
#改版前注册用户量赋给before
before=c(229,164,121,137,155,127,143)
#改版后注册用户量赋给after
after=c(217,284,155,190,158,170,180)
#改版前的咨询量是否小于改版后的咨询量
t.test(before-after,alternative ="less",conf.level = 0.95)
p-value = 0.02362<0.05,拒绝原假设H0,接受备择假设H1。在0.95的置信区间下改版后的效果明显优于改版前。
假设广告创意A1315次访问,65次转化,转化率4.94%,广告创意B939次访问,54次转化,转化率5.75%。广告创意B的效果是否优于广告创意A?
这里使用卡方检验,首先建立假设。
H0:两个广告创意的效果无差异
H1:广告创意B的效果优于广告创意A
对源数据近整理,广告创意A1250次未购买,65次购买,广告创意B885次未购买,54次购买。以此建立列联表。
#创建列联表X=c(1250,885,65,54)
dim(X)=c(2,2)
X
#使用卡方检验chisq.test(X,correct =FALSE)
p-value = 0.3978>0.05,在0.95的置信区间下接受原假设H0,两个广告创意效果没有显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28