
资深大数据专家???
最近朋友圈里许多的人在为公司招"资深大数据"的人才,不禁思考,什么样的人才是资深的大数据专家?也许这个题目有点大,那就再落地一点,什么样的人才能帮我的公司带入到大数据的领域,并为我的公司盈利?
技术角度
先从技术角度来说,资深大数据专家首先要有相关的代码能力,要能够搭建Hadoop,Spark,Yarn这样的架构,要知道在这样的架构里要用什么语言来满足自己的业务发展。
然后又要懂得数据挖掘及数据可视化,同时,也要掌握前端的所有技术(LVS,CDN,负载均衡....)及相应的语言选择,有人说,大数据时代,要对R,Python,Scala都可以知道并明白它们的常用函数及相关的语法格式。
同时,你也要对相关的算法有一定的了解,经常用到的有决策树,Apriori,K-NN,K-MEAN等等的算法,当你开始使用这些算法的时候,一定要了解它的原理。这样,至少在你后期的算法优化的过程帮助你提高你的效能。
好了,从上面的三个角度来说。看一看我们身边是否有这样的人。答案显而易见,没有!又或者有,都是在BAT这样的大公司,一个新兴的小公司如何去招到这样资深的大数据人才,很难!因为,在你懂得Hadoop之后,业务要有较快的反应,此时你又要考虑Spark,随着实时性的发展,你势必又要学习Storm.这一方面的人才不可能技术非常专一,相反,他的技术感知,或者说相应的学习能力才更为重要!
所以,从技术角度来说,资深大数据人才,不仅仅是一项技术很好,而是一个技术综合能力及学习能力很强的人。
业务角度
最近听了两个论坛,一个是IBM的,一个是R语言大会。感触非常深,IBM在大数据领域可谓是引领了概念与潮流。上来他的本专业博士就说到,现在国内的大数据公司70%以上都跟大数据没什么关系!这是现实,我自己所从事的行来所从事的数据分析也仅限于TXT,EXCEL这类的原文本分析,非结构化的数据在传统行业很少。
大数据做的最好的行业可能就是广告行业,打开手机,你的朋友圈,PC,PAD。至少广告是会随着你的平台而至死追随你的。而广告,金融,医疗这三个行业,为什么大数据会最先落地,不是因为他们这个行业技术成熟度高或是什么,更为重要的可能就是这三个行业比较有钱吧!这是在R语言大会上李舰(至于说他是谁,相信用R做过文本分析的人可能知道,是写RWordseg包的那位)说的。
如何去理解你的业务,这一点可能是摆在大数据人才面前最为重要的问题。你的技术再强,算法再精确,没有对业务的详细了解是不可能做出很有成效的结果。有人又说到,大数据是互联网行业,我们对传统行业又不了解,而且也没有积累,如何能够快速掌握了解一个行业,进而对相关的数据有一个更深入的了解。
在这里,我个人比较欣赏猎头的做法,当你想了解一个行业的时候,你不是去看书,而是去招人!我相信,在与人沟通的过程中,你会了解到更多的信息。混论坛也是一个比较好的选择,因为在论坛上,你能够看到这个行业的方方面面。对你了解业务尤其重要。
培训业务思维,还有一个最简单的办法就是多和你们公司的销售聊聊!
综上所述,我所理解的资深大数据人才,重点还是在于对业务的理解,说的落地一点就是对你所采集下来的TXT,EXCEL数据里关键的几个指标的把控。你要知道某一个指标数过大或过小意味着什么?如何让这些指标为你产生价值跟利益!然后才是相关技术的学习,技术这一块,个人建议多懂一些,当要用时,再深化细节里边的内容。
举一个例子,为什么在人才市场里,算法工程师要比代码工程师价格高,因为搞算法的人必须要会代码,同时要能明白算法的内在逻辑。这一点是在自己学习过程中才体会到的,当你逻辑清楚之会的代码实现就相对简单一些了。
架构,这一点对资深大数据工程师来说,是必须要有的能力。要能够对传统行业搭建起最好的架构并能够运行,同时也要兼顾到后期的可扩展。还有一点,就是你要跟你的领导讲明白。
业务能力,落地一点就是能够什么时侯收回成本并实现盈利!记得我的数据挖掘老师说过,对于传统行业做数据分析与挖掘,你要能够在3-6的时间里让客户见到效益。否则你的数据挖掘就没有意义!
好了,以上就是我所理解的资深大数据的概念。希望在大数据这个风口,自己能够少点浮躁,多点踏实,把技术学好,把业务理解透彻。谦卑着努力,加油!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18