京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建立大数据分析能力需四大要素
如今,企业都嗅到大数据带来的巨大价值,纷纷发力大数据领域,其中,建立大数据分析能力,是企业运用大数据的关键环节。领先的企业主要从四个方面入手建立自己的大数据分析能力:高质量的数据、先进的工具、精通数据的员工以及支持分析决策的流程和激励机制。
要素一:数据
任何一个企业都首先需要制定一个数据收集和整理的策略规划,这一规划必须明确定义如何利用大数据为企业的整体发展战略创造价值。好的数据政策明确定义了“什么是有用的数据”以及“如何从数据看我们的业务”。这些基本定义是一个企业如何建立自己的数据分析能力并将自己与竞争对手区隔开来的第一步。“什么是有用的数据”是所有数据政策的出发点和基础。
要素二:工具
先进的分析技术和大数据工具的进步如此之快,他们正以前所未有的方式帮助公司获取新的统计角度和结果。Hadoop、HPCC和NoSQL等工具和平台迅速崛起带来了全新的分析视角和机会;基于成熟的分析、视觉化以及数据管理的全新生态系统也以日新月异的速度改变着企业的分析能力。如今,可提供这类工具的供应商不胜枚举,开放资源的开发商数量更是不计其数。不过,令人感到些许意外的是,在我们的访谈中,仅有38%的企业表示他们曾使用过这些工具。
要素三:人员
成功的团队往往可以融合数据、技术和业务等各方面的人才来构建这一能力。以乐队为类比:团队的成员必须各自拥有不同的技能,但这些技能又有一些交叉重叠,同时他们非常了解互相之间如何进行有效和高效的沟通和协作。成功的大数据分析团队亦如此,我们需要:
数据科学家,提供有关统计、相关性和质量等的专业技能
商业分析师,从商业的角度出发,甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序
技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案
要素四:决心
顶尖的企业将大数据分析的理念植入到组织当中,明确定义希望通过大数据达成的目标并运用数据推动决策。CEO和高层领导团队将枯燥抽象的数据分析与实际的公司经营绩效提升的紧密关系展示给企业的每一位员工:不论是通过改进现有的产品和服务、优化内部流程、构建新产品和服务或是转变商业模式等等。表现优异的公司无一例外地围绕数据构建组织并恪守数据驱动型决策的承诺。
很多企业在大数据分析能力构建方面并不尽如人意,企业若想在大数据分析能力构建方面取得出色表现,必须在以上四个要点的基础上,做到均衡的完美表现,而更多企业则在其中一两个领域较为突出,其实,每个方面的成功都离不开其他方面的优势支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16