大数据分析然并卵?那是因为你没做到这些 看到这篇文章,感觉对数据分析一些点总结蛮好的,分享给大家。数据分析要产生真正的价值,或者说要让业务方,管理层感觉到真正的价值,其实需要非常多的东西: 要有 ...
2016-09-30如何做好大数据分析 大数据分析的使用者:有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是简单、易用、准确、稳定直观。下面将介绍一些基本的大数据分析类型。 数据挖 ...
2016-09-30你公司的大数据分析为何不成功 许多企业投下数百万美元用于大数据、分析法,并雇用数据分析家,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人对业务的 ...
2016-09-30如何更好的去分解功能点 在日常工作中,都会接触到一个个的需求,通过需求分析。我们通过建立一套解决方案去满足需求的实现。再去细化的话,就是将这套解决方案拆分为一个个的功能点。在这里,我们要讨论的就是 ...
2016-09-30数据分析不得不知的七种回归分析技术 回归分析技术是一种非常重要的数据分析方法,有着广泛的应用,能够解决目标变量为连续的预测分析问题。 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的 ...
2016-09-30总结了一下常见集中排序的算法 归并排序 归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。 具体的归并排序就是,将一组无序数按n/2递归分解成只 ...
2016-09-30不知该看哪些数据?卖家每日必看的6个数据 数据分析的重要性不用赘述,想必卖家们也心知肚明,但是在每日的店铺运营中该看哪些数据,如何分析哪些数据,确是卖家们每日最头疼的问题,学不会数据分析?卖家每日 ...
2016-09-29产品运营中什么样的数据分析方法才是合适的 产品运营的日常工作中肯定是需要对于一些运营指标进行把控的。当面对杂乱无章的数据时,产品运营的小伙伴需要从不同的角度去分析产品的数据,进而得到有效的运营指导 ...
2016-09-29浅谈数据挖掘与数据分析? 数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对 ...
2016-09-298分钟让你快速读懂数据分析 最近在学习一些数据分析方法,结合自己的一些心得,梳理出以下数据分析文章,读完本文大概需要8-10分钟。 一、什么是数据分析? 数据分析是指用适当的统计方法对收集来的数据 ...
2016-09-29如何实现数据分析的工业化? 为了更好地利用大数据的体量、速度和多样性,让大数据为自己服务,企业需要流程、结构和透明度,而工业化提供了这三样东西。如果你真的想从数据中提取价值,并使你的公司像一台润滑 ...
2016-09-29听说你是做数据分析的 邓小姐变身数据分析汪长久以来,常常处在精神崩溃的边缘。今天宝宝心里苦,但宝宝要说!含泪控诉!对有以下恶劣言行的人类,表示强烈抗议!!!强烈抗议!!!强烈抗议!!!如果你也是一只数据分析 ...
2016-09-29从技术架构的角度去丰富你的大数据知识 对于大数据的学习,很长一段时间,都觉得非常迷茫。不知道具体该学习什么!进而导致知识的知识点挺多,而自己所会的内容都不能够形成很好的体系,进而为自己的职场加分 ...
2016-09-28学习总结:统计原理对数据分析的重要 最近开始业余学习CDA的课程,就发现统计原理对自己来说是很难的。去年在学SAS的过程中,就听说过,如果你能把那么复杂的统计函数及统计公式全部理解清楚的话,那你 ...
2016-09-28实战数据分析决策的3个理念 在过去工作经历里,外企给人最深的印象是“数据导向”,理性和数据是跨越文化隔阂,进行平等沟通的桥梁;而在国内企业,“经验导向”是主流,数据的作用主要是“辅助证明经验得到的 ...
2016-09-28数据分析的坑,都在统计学里埋过 为什么要了解统计学对于普罗大众来说,统计学应该会成为每人必备的常识,才能避免被越来越精致的数字陷阱欺骗。起码当你看到各种百分比和收益率,能多出一份警觉,多思考些他们 ...
2016-09-28数据挖掘中易犯的几大错误 1. 缺乏数据(Lack Data) 对于分类问题或预估问题来说,常常缺乏准确标注的案例。 例如: -欺诈侦测(Fraud Detection):在上百万的交易中,可能只有屈指可数的欺诈交易,还有 ...
2016-09-28数据分析:客户细分的五个过程 第一步,客户特征细分。一般客户的需求主要是由其社会和经济背景决定的,因此对客户的特征细分,也即是对其社会和经济背景所关联的要素进行细分。这些要素包括地理(如居住地、行 ...
2016-09-28数据可视化可以帮助用户理解数据,一直是热门方向。 图表是\"数据可视化\"的常用手段,其中又以基本图表----柱状图、折线图、饼图等等----最为常用。 用户非常熟悉这些图表,但如果被问道,它们的特点是什么,最 ...
2016-09-28常用的产品数据分析方法之漏斗模型与归因模型 刚刚接触数据运营的同学可能都会产生这样的困惑:数据运营难不难?我数学不好该怎么做?是不是还需要学习数学建模?我该看点什么书学习?包括喵君刚开始工作的时候 ...
2016-09-27基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15