【实例】数据科学家所需的技能和素质 对数据科学家的关注,源于大家逐步认识到,Google、Amazon、Facebook等公司成功的背后,存在着这样的一批专业人才。这些互联网公司对于大量数据不是仅进行存储而已,而是将 ...
2016-09-21如何做个有能力、懂业务、擅工具的数据分析师 经常有网友我问“如何做一个数据分析师?”,将数据分析师分成初级、高级、数据挖掘工程师三个层次来阐述,大家正好可以对号入座。 1、数据分析师的能力体系 ...
2016-09-20R与并行计算 本文首先介绍了并行计算的基本概念,然后简要阐述了R和并行计算的关系。之后作者从R语言用户的使用角度讨论了隐式和显示两种并行计算模式,并给出了相应的案例。隐式并行计算模式不仅提供了简单清 ...
2016-09-20机器学习算法复习--随机森林 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时, 单决策树又有一些不好的 ...
2016-09-20大数据分析之—基于模型的复杂数据多维聚类分析 随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData An ...
2016-09-20数据分析/数据挖掘 入门级选手建议 1.数据分析和数据挖掘联系和区别 联系:都是搞数据的 区别:数据分析偏统计,可视化,出报表和报告,需要较强的表达能力。数据挖掘偏算法,重模型,需要很深的 ...
2016-09-20常规商业问题分析的角度 统计分析给您以先机,分析报告给您后见之明,数据挖掘给您以洞察,数据挖掘--市场调研--统计分析构成企业日常商业分析的完美循环。 1、多维度分析:从多个不同的角度及其组合去分析 ...
2016-09-20数据分析的一些误区 1.忽略沉默的数据 二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观 ...
2016-09-19【经验】数据挖掘七步走 Step1.商业理解 就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟 ...
2016-09-19面对数据工程师,你有7个问题可以问 运用数据进行管理不是什么新鲜事,但是大数据还是个新概念, 有相关的风险、挑战和机会。高级管理者需要具备一定的认识,以备他们的数据专家提出新观点时,自己有所准备。下列这 ...
2016-09-19排名前20位的大数据职位及其职责,你能胜任么 大数据在全球范围内的IT就业市场占有越来越重要的影响。根据Gartner公司提供的数据,截至到2015年将有440万的IT工作来支持大数据,仅美国就会有190万的IT工作产生。 ...
2016-09-19数据分析师:数据分析到底适合于哪些人才 到底哪些人适合于进行数据分析呢?毕竟数据分析不仅仅是写数据报表或者整理数据,而是需要对数据进行分析。对于互联网公司而言,其又需要招募怎样的人才作为数据分析师 ...
2016-09-19大数据之有指导数据挖掘方法模型 数据挖掘的目的,就是从数据中找到更多的优质用户。 什么是有指导的数据挖掘方法模型,以及数据挖掘如何构建模型。在构建一个有指导的数据挖掘模型,首先要理解和定义一些模型 ...
2016-09-19用R语言对混合型数据进行聚类分析 利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时 ...
2016-09-18有关文本挖掘的14个概念 我们所处的信息时代以急速增长的数据信息收集、储存和转换成电子格式为特征。大量的商业数据以杂乱无章的文本形式储存。 据美林公司(Merrill Lynch)和高德纳公司(Gartner)联合进 ...
2016-09-18数据分析,如何生成你需要的基础数据 想要将数据分析、数据挖掘的作用最大化,数据的完整性总是必不可少的,因此,掌握一些生成基础数据的方法也非常重要。本期文章,我们以医疗场景为例,手把手教你生成 ...
2016-09-18SAS市场研究应用介绍:多维偏好分析 多维偏好分析(multidimensional preference analysis)介绍 在联合分析中,被访者需要描述他们对产品的偏好情况,这些产品有若干实验者事先决定的属性。但有时候,这些属 ...
2016-09-18SAS市场研究应用介绍:离散选择分析 一、离散选择分析(discrete choice analysis)介绍 联合分析是用来发掘消费者的偏好,指出了消费者将选择购买哪种组合(联合分析相关内容具体请参考上一文章介绍:SAS市场 ...
2016-09-18SAS市场研究应用介绍:对应分析 一.对应分析(Correspondence analysis)介绍 前二周我们简单讲了SAS市场研究应用,联合分析与离散选择偏好。 组合分析用来评价消费者偏好。如果将产品看成一些属性的组合, ...
2016-09-18SAS市场研究应用介绍:多维尺度分析 多维尺度概念 市场研究感兴趣的是,消费者在购买产品时是如何做决策的?产品的哪种属性是重要的?是否所有的消费者以同样的方式做决策?如果不是,又是如何不同的?在做出 ...
2016-09-17CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14