【实例】数据科学家所需的技能和素质 对数据科学家的关注,源于大家逐步认识到,Google、Amazon、Facebook等公司成功的背后,存在着这样的一批专业人才。这些互联网公司对于大量数据不是仅进行存储而已,而是将 ...
2016-09-21
如何做个有能力、懂业务、擅工具的数据分析师 经常有网友我问“如何做一个数据分析师?”,将数据分析师分成初级、高级、数据挖掘工程师三个层次来阐述,大家正好可以对号入座。 1、数据分析师的能力体系 ...
2016-09-20R与并行计算 本文首先介绍了并行计算的基本概念,然后简要阐述了R和并行计算的关系。之后作者从R语言用户的使用角度讨论了隐式和显示两种并行计算模式,并给出了相应的案例。隐式并行计算模式不仅提供了简单清 ...
2016-09-20
机器学习算法复习--随机森林 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时, 单决策树又有一些不好的 ...
2016-09-20
大数据分析之—基于模型的复杂数据多维聚类分析 随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData An ...
2016-09-20
数据分析/数据挖掘 入门级选手建议 1.数据分析和数据挖掘联系和区别 联系:都是搞数据的 区别:数据分析偏统计,可视化,出报表和报告,需要较强的表达能力。数据挖掘偏算法,重模型,需要很深的 ...
2016-09-20
常规商业问题分析的角度 统计分析给您以先机,分析报告给您后见之明,数据挖掘给您以洞察,数据挖掘--市场调研--统计分析构成企业日常商业分析的完美循环。 1、多维度分析:从多个不同的角度及其组合去分析 ...
2016-09-20数据分析的一些误区 1.忽略沉默的数据 二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观 ...
2016-09-19【经验】数据挖掘七步走 Step1.商业理解 就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟 ...
2016-09-19
面对数据工程师,你有7个问题可以问 运用数据进行管理不是什么新鲜事,但是大数据还是个新概念, 有相关的风险、挑战和机会。高级管理者需要具备一定的认识,以备他们的数据专家提出新观点时,自己有所准备。下列这 ...
2016-09-19
排名前20位的大数据职位及其职责,你能胜任么 大数据在全球范围内的IT就业市场占有越来越重要的影响。根据Gartner公司提供的数据,截至到2015年将有440万的IT工作来支持大数据,仅美国就会有190万的IT工作产生。 ...
2016-09-19
数据分析师:数据分析到底适合于哪些人才 到底哪些人适合于进行数据分析呢?毕竟数据分析不仅仅是写数据报表或者整理数据,而是需要对数据进行分析。对于互联网公司而言,其又需要招募怎样的人才作为数据分析师 ...
2016-09-19
大数据之有指导数据挖掘方法模型 数据挖掘的目的,就是从数据中找到更多的优质用户。 什么是有指导的数据挖掘方法模型,以及数据挖掘如何构建模型。在构建一个有指导的数据挖掘模型,首先要理解和定义一些模型 ...
2016-09-19
用R语言对混合型数据进行聚类分析 利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时 ...
2016-09-18
有关文本挖掘的14个概念 我们所处的信息时代以急速增长的数据信息收集、储存和转换成电子格式为特征。大量的商业数据以杂乱无章的文本形式储存。 据美林公司(Merrill Lynch)和高德纳公司(Gartner)联合进 ...
2016-09-18
数据分析,如何生成你需要的基础数据 想要将数据分析、数据挖掘的作用最大化,数据的完整性总是必不可少的,因此,掌握一些生成基础数据的方法也非常重要。本期文章,我们以医疗场景为例,手把手教你生成 ...
2016-09-18
SAS市场研究应用介绍:多维偏好分析 多维偏好分析(multidimensional preference analysis)介绍 在联合分析中,被访者需要描述他们对产品的偏好情况,这些产品有若干实验者事先决定的属性。但有时候,这些属 ...
2016-09-18
SAS市场研究应用介绍:离散选择分析 一、离散选择分析(discrete choice analysis)介绍 联合分析是用来发掘消费者的偏好,指出了消费者将选择购买哪种组合(联合分析相关内容具体请参考上一文章介绍:SAS市场 ...
2016-09-18
SAS市场研究应用介绍:对应分析 一.对应分析(Correspondence analysis)介绍 前二周我们简单讲了SAS市场研究应用,联合分析与离散选择偏好。 组合分析用来评价消费者偏好。如果将产品看成一些属性的组合, ...
2016-09-18
SAS市场研究应用介绍:多维尺度分析 多维尺度概念 市场研究感兴趣的是,消费者在购买产品时是如何做决策的?产品的哪种属性是重要的?是否所有的消费者以同样的方式做决策?如果不是,又是如何不同的?在做出 ...
2016-09-17在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27