
有关文本挖掘的14个概念
我们所处的信息时代以急速增长的数据信息收集、储存和转换成电子格式为特征。大量的商业数据以杂乱无章的文本形式储存。
据美林公司(Merrill Lynch)和高德纳公司(Gartner)联合进行的一项调查表明,85%的企业数据或多或少是以无序的方式收集储存的。同时,调查声称这些杂乱无章的数据每18个月增长一倍。
当今商界奉行“知识就是力量”,知识来源于数据和信息,若企业能够高效且有效地挖掘文本数据背后的资源,就能够做出更好的决策。文本挖掘(在文本数据库也称文本数据挖掘或者知识发现)是从大量无结构的数据中提炼出模式(也就是有用的信息和知识)的半自动化处理过程。请注意,数据挖掘是从有结构的数据库中鉴别出有效的、新颖的、可能有用的并最终可理解的模式。在这个有结构的数据库中,分类的、顺序的或者连续型变量构建起记录,数据在这些记录下进行组织。文本挖掘与数据挖掘的共同之处在于,它们都为了同样的目标,使用同一处理方式,不同之处在于文本挖掘流程中“输入”一项是一堆杂乱无章的(或者说是未经整理的)数据文件,比如Word、PDF、本文文档摘录、XML文件等。在大量数据产生的领域,文本挖掘的益处尤为突出。信息提取。通过模式匹配寻找出文本中先定的物件和序列,文本挖掘能够鉴别文本中主要的短语和关系。最常见的信息提取形式大概就是“实体抽取”。命名实体抽取包括命名实体识别(利用现有对域的知识,进行已知实体名称的识别,包括:人、企业、地点的名字、时间表达式以及某些数值表达式)、指代消解(检测文本实体间的同指代和回指代联系)、关系抽取(鉴别实体间的关系)。
话题跟踪。根据用户浏览的文件记录,文本挖掘可以预测用户可能喜欢的其他文本。
总结。文本挖掘可以为读者总结文本概要,节省阅读时间。
分类。文本挖掘能够发现稳当的主题,并归置在预先制定的类别之下。
聚类。文本挖掘可以在没有预先制定的类别时归类相似的文档。
概念衔接。文本挖掘可以鉴别文档的共享概念,从而把相关的文档连接在一起。用户由此可以找到传统搜索方法无法发现的信息。
答疑。通过知识驱动的模式匹配,文本挖掘可以找出问题的最佳答案。
文本挖掘有自己的语言体系,包括多种多样的术语和缩略词。非结构化数据。结构化数据有其预设的格式,常和简单的数据数值(分类的、顺序的或者连续型变量)一同被组织进入记录并储存在数据库。语料库。在语言学中,语料库是一个大型的结构化文本的集合(现在一般是以电子形式储存和处理),用作知识发现的工具。术语。术语是由在一个特定域的语料库中,通过自然语言处理提取的单词或者多词短语。概念。概念是通过人工、统计、规则导向或者多种混合的分类方法,从一系列文档中生成的特征。与术语相比,生成概念需要更高层次的抽象。词干提取。词干提取是将屈折词简化到词干(或者词根)的处理方式。比如,stemmer,stemming和stemmed都来自stem。停用词。停用词(也称为“干扰词”),是在自然语言处理之前或者之后被过滤掉的单词。停用词没有统一的清单,大多数自然语言处理工具将冠词(如a,am,the,of等),助动词(如is,are,was,were等)以及只在上下文中有意义,不具有区分价值的词视作停用词。
同义词和多义词。同义词是在句法上不同(也就是拼写不一样),但是意思一致或者相似的词语。相反地,多义词或者“同形异义词”,是句法上一致,但意义不同(例如bow,有鞠躬、船头、蝴蝶结等多个意思)。
标记化。标记是句子中已分类的文本块。根据功能的不同,与标记对应的文本块被分门别类,这一与意义相关的过程被称为“标记化”。只要对结构化文本有意义,标记可以是任何形式的。
术语词典。术语词典是一个小而专的领域里的术语集合,可以控制从语料库中提取的字词。
词频。词频就是一个单词在某文本中出现的次数。
词性标注。词性标注就是根据单词的意思和它在上下文的用法标记词性(是名词、动词、形容词还是副词)。
形态学。形态学是语言学的一个分支,是自然语言处理的一部分,它研究的是词语的内部结构。
术语-文本矩阵。常用来呈现术语和文本间基于频率的关系,以表格的形式表现,行表示术语,列表示文本,术语和文本间的频率以整数形式填在每个格里。
奇异值分解(也称为潜在语义索引)。是一种将术语——文本矩阵转化到可操作大小的降维手段。它利用一种与主成分分析法类似的矩阵控制法来生成中等大小的术语——文本频率表现形式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28