SAS市场研究应用介绍:组合/联合分析 一SAS市场研究模块介绍 市场研究是指研究组织(企业)与客户、公众三者关系的规律的过程,是市场营销领域中的一个重要元素。它把消费者、客户、公众和营销者通过信息 ...
2016-09-17数据挖掘典型应用:如何做好关联分析 在电商数据运营中,对于客户而言,有两个很重要的指标对于扩大销售规模是很重要的:第一,提高顾客重复购买次数;第二,提高客户订单中的Basket size(即购物篮件数)。而第 ...
2016-09-17甲方乙方:数据分析内外有别 现在是一个大数据时代,人人嘴边都挂着数据创造价值、数据挖掘等一些热词。各公司内部也逐渐认识到数据的重要性,纷纷成立数据部门,期待数据可以真正的为业务服务。 另外,也有 ...
2016-09-17数据科学家的4种工作形式与8项求职技能 “数据科学家”被誉为21世纪最性感的工作,但如何成为一个数据科学家?怎样才能入门呢?许多的信息可能导致你认为成为一个数据科学家需要全面的精通一些领域,比如软 ...
2016-09-17数据分析,快比大更重要 人人都在讲大数据,数据越大,就越有价值吗?在大数据环境下,我们需要把大叔据做成小数据,数据分析采更有商业价值。 我觉得大数据本身没有任何意义,数据对我们来说就是硬盘存在电 ...
2016-09-17系统性阐述用户画像数据建模方法 经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。伴随着大数据应用的讨论、创新,个性化技 ...
2016-09-16经验 : 从设计到数据——写给非数据人的数据入门 供非专业人士学习交流,望专业人士勘察纠错。 一. 一段经历,一点心得 一直追我博客的人想必是清楚我之前做交互设计,然后去轮岗过行业运营,然后 ...
2016-09-16数据分析的影响因素之组织架构革新 从底层数据的丰富和算法应用的丰富中,数据分析的原材料需求和基础技术需求都已经有了显著的提升,可以说从功能实现上来讲,数据分析已经成为企业管理的重点核心。但在大多数 ...
2016-09-16数据分析知识,会员分析的基本方法 零售企业间的竞争,归根结底是对顾客资源的争夺,会员管理必将在这场争夺大战中发挥越来越大的作用。 会员卡的静态数据,如年龄、性别、职业、单位邮编、单位地址。 会 ...
2016-09-16为什么要重新开始学习数据分析 在新生大学里经常可以听到老师讲到,看见真实的世界。那么该如何定义真实的世界?如何才能看到真实的世界呢? 首先真实的世界,绝对不仅仅是每天看到的新闻,每天听到的故事, ...
2016-09-16如何成为大数据企业 献给不懂数据挖掘的你 一家中等规模的百货商场,通过视频监控记录下商场各个区域的客流人数,从而评估每天各个时段客流的在店时长,进而结合销售记录数据估算出客流中带有明确购买目标的“ ...
2016-09-16干货 :这7种回归分析技术 学了不后悔 本文解释了回归分析及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素, ...
2016-09-15如何区分三个大数据热门职业 如何区分三个大数据热门职业—数据科学家、数据工程师、数据分析师 随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会。数据科学家、数据工程师 ...
2016-09-15从现在起,做一名合格的数据科学家 “数据科学家”被誉为21世纪最性感的工作(Thomas Davenport和D.J. Patil在哈佛商业评论上曾发表的一篇文章中称),但如何成为一个数据科学家?怎样才能入门呢?许多的信息可 ...
2016-09-15业务分析师和数据科学家有什么不同 数据逐渐成为企业的新一代货币,这也正是公司为了做出更好的决策不遗余力的挖掘数据的潜力的原因。为此,公司需要的是懂得如何从海量数据源中获取需要的数据并以有价值的方式 ...
2016-09-15提升R代码运算效率的11个实用方法 众所周知,当我们利用R语言处理大型数据集时,for 循环语句的运算效率非常低。有许多种方法可以提升你的代码运算效率,但或许你更想了解运算效率能得到多大的提升。本文将介绍 ...
2016-09-15【R】如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。 本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码, ...
2016-09-15来自一位资深的数据分析从业者的分享 一、掌握基础、更新知识。 基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家 ...
2016-09-14一个数据科学家首先应该做的5件事 人们总是问我如何有效的成为一名数据科学家。我的经历是先成为一名软件工程师,然后读了数据科学相关的PhD (是在它变成热点之前)。在这篇文章里,基于我在这个领域的经验总结 ...
2016-09-14避免大数据分析的思维陷阱 大数据分析可以追溯到30年前, 那时在数据分析界, 人们认为数据分析的工具和算法已经可以深度分析出任何东西, 所欠缺的就是数据量。 数据分析师们的说法就是, 如果你能够让我测量 ...
2016-09-14在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14