京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的影响因素之组织架构革新
从底层数据的丰富和算法应用的丰富中,数据分析的原材料需求和基础技术需求都已经有了显著的提升,可以说从功能实现上来讲,数据分析已经成为企业管理的重点核心。但在大多数企业当中,除了功能实现外,他们还需要,同时也是更需要的,其实是在管理架构,也就是企业管理对数据分析的支撑上,今天更多的传统企业是因为其自身固有的老式管理架构特点,才致使数据分析无法发挥其全部能力。在这次文章中,我们将从最后的一个版块,也就是从企业管理对数据分析的支撑角度来看,在管理架构上,今天的企业是如何革新来提升对数据分析的支撑效率,确保其正常运作和发挥价值的。
传统企业数据分析与管理架构现状随着企业产品的同质化提升,今天的企业更多需要关注主要还是在对客户需求的快速挖掘和实现上。互联网思维中一个非常重要的概念就是快速迭代,在客户刚刚产生需求时,就及时抓住时机为客户生产匹配的产品,而且在产品使用后,及时抓取客户衍生的新需求,并再及时把握并改进产品甚至产品新产品,确保在满足客户需求上,始终站在客户视野中的第一排,其他的包括大数据、云计算等技术也是为了能够更全面的获得客户数据为目标。然而这些在很多传统企业中却是无法实现的,其原因不在于缺少相应的功能实现技术,也不是在资金或企业发展战略上,而就是在管理架构上难以满足。
在这种传统管理架构中,企业最缺乏的就是统筹管理的能力,无论是在数据分析还是在客户体验上。由于传统管理架构基于产品生命周期,从宏观战略设计,到前期产品策划、产品生产,再到市场营销、客户服务,然后是后台系统、财务、人资等方面的支撑对各个部门分别进行职能设置,而其中核心缺少的就是基于客户体验为出发的统筹的分析职能。
虽然目前对于数据分析在企业中的组织架构位置设置还没有统一定论,但笔者从数据分析的角度来考虑,还是认为统筹式的数据分析管理模式较为理想。在最初级的设置中,数据分析人员一般会被安置在各个业务部门当中,这种设置一方面因为数据分析能力较弱,而数据分析仅作为数据展现而用,不能做到分析,甚至是对部门工作指导的作用,所以仅在各部门内放置;另一方面因为是各业务部门需要对其考核指标进行分析,需要数据分析人员对部门的指标有充分的认识,确保其最终分析报告与部门的核心指标能够息息相关,所以数据分析人员大多都在各业务部门当中;再者是因为对数据的保密性较为理想。
但是这种模式的缺点则在于没有统筹各部门的能力上。由于各部门的数据分析人员仅负责部门内部的指标数据,而没有获取其他部门的数据的权限和义务,因此在这种架构下,各部门的指标不能统筹进行分析和指导。虽然分散式的数据分析有他的好处,但是笔者认为在今天以客户体验提升利润的企业运营模式下,企业对于客户体验相关的数据分析成为了核心内容。但目前一方面由于企业的管理架构是以产品的生产周期设置而不是以客户生命周期设置的,因此客户体验相关的问题经常会涉及到多个部门,只有各部门统筹分析才能找到客户问题对应的企业内部运营问题;同时另一方面由于各部门对于其指标的设置更关注于自身部门的职能特点,因此侧重产品生命周期的部门设置很难将客户体验相关指标作为其关注点。
理想的组织架构——统筹的数据分析管理部门在上述问题下,企业单独设置统筹的数据分析管理部门应当是企业未来组织架构设立的一个理想方向。实际上在今天,很多企业也在尝试这个方向,他们尝试让IT部门来统筹负责企业的数据分析,将原来的数据孤岛进行集中化管理,从而对各业务部门提供指导性建议。实际上今天IT部门的CIO能够在企业战略中越来越靠前,一个很重要的原因就在于其下属的数据分析职能。
在进一步的理想状态下,数据分析职能将需要对各业务部门的指标进行深入探讨,并制定客户体验指标,量化客户行为及感受,将这些新指标与业务部门的绩效体系相关联,形成各业务部门的以客户体验为导向的KPI体系,调整各业务部门的工作方向,同时基于数据分析报告,向各个部门发起改善请求,协同各部门对报告所发现问题进行优化处理。
这种理想模式不是一蹴而就的,实际上很多将数据分析独立作为IT部门之下的职能的企业都面临一个核心的问题,即这些数据分析职能的人员更多是数据库或数据挖掘出身的人员,但是他们都不是从业务部门晋升或调配过来的,因此他们对于业务的熟悉度,对于各部门的指标意义所在没有理解,其生成的报告对于部门工作的指导有限。因此最终独立数据分析部门的人员的素质需求是相当高的,除了对数据分析相关专业知识有基础,还必须对于业务有充分理解才能胜任。
部门协同机制的重要性同时企业内部各部门与数据分析部门的协同机制也必须成熟,如在互联网公司中,其管理架构的特点是产品项目管理模式。最典型的案例就是腾讯公司,其中各个部门都是以产品为单位设置的,旗下是对产品生产所需要配置的团队结构,因此针对客户的诉求,其团队只需要对单一产品的功能进行改善即可,因此其效率极高。
传统企业由于管理架构不易调整,更多采取的是折中的方案,其中移动运营商就有采取阿米巴团队模式的方案开展工作的案例。通过将各部门中的人员抽调,针对专项的工作,各部门成员完全脱产对相关工作进行落地,以项目形式,设置针对本次项目的KPI,开展并完成项目内容,提升各个问题的处理效率。
在独立的数据分析职能和与其他部门协同机制的建立下,企业才能真正应用所有收集到的数据资料,通过匹配的算法模型,最终为战略及部门工作提供全面有效的指导建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26