
数据分析,快比大更重要
人人都在讲大数据,数据越大,就越有价值吗?在大数据环境下,我们需要把大叔据做成小数据,数据分析采更有商业价值。
我觉得大数据本身没有任何意义,数据对我们来说就是硬盘存在电脑里面,越大硬盘越多成本越高耗电量越狠。
数据分析的5个步骤
数据本身之后必须要讲一下分析。什么是分析?
我们可以分成几个步骤的话有五个步骤:第一步是必须要理解以前发生的这件事,历史上发生过什么事,第二步明白历史上为什么会发生这件事,第三步目前当下正在发生的什么事,第四步未来预测将要发生什么事情,第五步就是改变未来。
在数据分析上,能够做到第四步的预测就已经非常厉害了。不过,在实际商业价值的产出来说,第一步到第四步基本的商业价值是零。假如我预测Simon今天早上会吃饭,明天早上坐飞机回美国,这个根本没有问题,因为Simon今天晚上肯定会吃饭,美国肯定要回,没有任何价值。我们需要的是要把未来变得更好,这才是分析本身产生价值最重要的一环。
在上图中,我们还容易发现,从第一到第五步之间复杂程度显著增加了。一个好的分析师能改变未来,而一般的分析师能改变现在,差一点的分析师连过去都不知道。
数据分析,快比大更重要
实际上数据在过去的几年增长了不同的阶段,以Linkedin相关的数据为例:第一步就是交易数据,以往大家都用兆字节来表示来展示;第二步是CRM,在美国企业里面讲营销、销售,一个人到底是谁,他在哪里住,大约月收入多少钱,在什么公司,这些数据我们叫GB来衡量;再下一步就是网络数据,电子商务的网站,淘宝或者阿里是完全不同的级了,普通的互联网公司,数量级是TB来衡量;第四步就是社交网络数据,推特、脸谱为首的这些社交网络数据,他们产生的数据更大了。
很多人都讲大数据真大,越大越有价值,但真如此吗?大数据背后,大就是慢,就是复杂,就是成本提高,就是没有效率。中国的孙子兵法讲到兵在精不在多,数据再大没有意义也是没有完全没有价值的,所以我们要把大数据做成小数据。
在商业数据分析中,我们要强调速度。为什么要讲速度呢?刚才品觉已经跟大家分享了,在数据本身我们讲3V,本来说就是速度的体现,我讲的速度不是数据存储的速度,而是商业需求的速度,商业需求速度在今天互联网出现以后变成了100亿倍的增长,以前的话比如说像姜子牙做决策的话可能得思考一年,姜子牙思考了70年最后遇到了周文王,现在不一样,现在每个人需要作出非常非常迅速的决策,非常多的决策,每个人都需要决策,这就要求我们在速度上要跟上商业的发展。所以说,兵法里面也讲了一句话,兵贵胜不贵久,就是越慢越没有价值,越快越有价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30