工业大数据分析的误区与建议 作为数据价值变现的核心技术手段之一,大数据分析的作用被广泛宣传甚至神化。对于工业大数据分析,产业界存在有不少困惑。是否把商业大数据分析照搬过来就是就足够了?只要有了海 ...
2016-09-11SAS中数据集的合并 数据集的合并分为两种情形:第一种是纵向合并,即把具有相同变量的数据集合并起来;另一种是横向合并,把记录数目相同的数据集合并起来。 1 纵向合并 纵向合并的方法很简单,就是使 ...
2016-09-10SPSS的Frequencies过程 第一、选择Statistics 第一组: Percentile Value(百分位数组) Quartiles:四分位数 Cut points for equal groups:将数据平分为所设定的相等等分,本例输入6 ...
2016-09-10数据挖掘技术在信用卡业务中的应用案例分享 信用卡业务具有透支笔数巨大、单笔金额小的特点,这使得数据挖掘技术在信用卡业务中的应用成为必然。国外信用卡发卡机构已经广泛应用数据挖掘技术促进信用卡业务的发 ...
2016-09-10数据挖掘过程中:数据预处理 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处 ...
2016-09-10零售业中常见数据分析 财务分析: 1)分析企业的财务状况,了解企业资产的流动性、现金流量、负债水平及企业偿还长短期债务的能力,从而评价企业的财务状况和风险。 2)分析企业的资产管理水平,了解企业 ...
2016-09-10几种常见的缺失数据插补方法 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这 ...
2016-09-10数据挖掘过程中:数据预处理 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理 ...
2016-09-09数据挖掘系统的分类 数据挖掘是一个交叉学科领域,受多个学科影响,包括数据库系统、统计学、机器学习、可视化和信息科学。此外,依赖于所用的数据挖掘方法,可以使用其他学科的技术,如神经网络、模糊和/或粗 ...
2016-09-09数据挖掘算法之关联规则挖掘(一)apriori算法 关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一 ...
2016-09-09SPSS数据录入对格式的要求 数据准备是开始数据分析的第一步,不过很多初学者就卡在这个问题上。录入的数据不符合SPSS对数据格式的要求,导致无法正确进行后续的一系列分析过程。 首先来看一下SPSS的数据存 ...
2016-09-09SPSS输出的结果都要写到文章中吗 经常有人问到,SPSS输出的结果都要写到文章中吗?文章中应该写什么呢?比如,均值、中位数、众数、标准差、百分位数、最小值、最大值等等,都要出现在文章中吗?洋洋洒洒那么多 ...
2016-09-09统计学和数据挖掘关系 1. 简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数 ...
2016-09-08一个资深数据人对数据挖掘解读 在银行做了两年的数据分析和挖掘工作,较少接触互联网的应用场景,因此,一直都在思考一个问题,“互联网和金融,在数据挖掘上,究竟存在什么样的区别”。在对这个问题的摸索和理 ...
2016-09-08大数据挖掘中易犯的11大错误 0.缺乏数据(LackData) 对于分类问题或预估问题来说,常常缺乏准确标注的案例。 例如: 欺诈侦测(FraudDetection):在上百万的交易中,可能只有屈指可数的欺诈交易,还有很 ...
2016-09-08数据科学家、数据工程师、数据分析师,如何区分这三个大数据热门职业 随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会。数据科学家、数据工程师、数据分析师已经成为大数据行 ...
2016-09-08App数据分析的目的及运营该关注那些数据 有很多朋友说不知道数据运营该从哪里入手,该怎么运用统计平台的那些功能?产品初期应该关注哪些数据指标,怎样通过数据来准确定位产品问题并指导产品优化。 首先, ...
2016-09-08大数据分析的五个基本方面 1. Analytic Visualizations(可视化分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结 ...
2016-09-08有效数据分析的10个途径,让你更了解用户体验、行为及需求 收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户 ...
2016-09-07数据建模那点事儿 今天要说内容是建模。为啥我作为一个数学能力并不强的人要在这献丑讲建模的事呢?其实我的目的很简单,就是为了告诉大家一个事实:数据分析中的建模,并没有想象中那么高深莫测,人人都有机会 ...
2016-09-07Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23