入门数据分析,我应该学习什么编程语言 很多时候,当和人们讨论怎么开始学习数据科学,一个疑惑总是出现在我们面前: 我不知道应该学什么编程语言。 不仅仅是编程语言,这还包括软件系统,例如TABLEAU,SPSS ...
2016-09-11工业大数据分析的误区与建议 作为数据价值变现的核心技术手段之一,大数据分析的作用被广泛宣传甚至神化。对于工业大数据分析,产业界存在有不少困惑。是否把商业大数据分析照搬过来就是就足够了?只要有了海 ...
2016-09-11SAS中数据集的合并 数据集的合并分为两种情形:第一种是纵向合并,即把具有相同变量的数据集合并起来;另一种是横向合并,把记录数目相同的数据集合并起来。 1 纵向合并 纵向合并的方法很简单,就是使 ...
2016-09-10SPSS的Frequencies过程 第一、选择Statistics 第一组: Percentile Value(百分位数组) Quartiles:四分位数 Cut points for equal groups:将数据平分为所设定的相等等分,本例输入6 ...
2016-09-10数据挖掘技术在信用卡业务中的应用案例分享 信用卡业务具有透支笔数巨大、单笔金额小的特点,这使得数据挖掘技术在信用卡业务中的应用成为必然。国外信用卡发卡机构已经广泛应用数据挖掘技术促进信用卡业务的发 ...
2016-09-10数据挖掘过程中:数据预处理 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处 ...
2016-09-10零售业中常见数据分析 财务分析: 1)分析企业的财务状况,了解企业资产的流动性、现金流量、负债水平及企业偿还长短期债务的能力,从而评价企业的财务状况和风险。 2)分析企业的资产管理水平,了解企业 ...
2016-09-10几种常见的缺失数据插补方法 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这 ...
2016-09-10数据挖掘过程中:数据预处理 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理 ...
2016-09-09数据挖掘系统的分类 数据挖掘是一个交叉学科领域,受多个学科影响,包括数据库系统、统计学、机器学习、可视化和信息科学。此外,依赖于所用的数据挖掘方法,可以使用其他学科的技术,如神经网络、模糊和/或粗 ...
2016-09-09数据挖掘算法之关联规则挖掘(一)apriori算法 关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一 ...
2016-09-09SPSS数据录入对格式的要求 数据准备是开始数据分析的第一步,不过很多初学者就卡在这个问题上。录入的数据不符合SPSS对数据格式的要求,导致无法正确进行后续的一系列分析过程。 首先来看一下SPSS的数据存 ...
2016-09-09SPSS输出的结果都要写到文章中吗 经常有人问到,SPSS输出的结果都要写到文章中吗?文章中应该写什么呢?比如,均值、中位数、众数、标准差、百分位数、最小值、最大值等等,都要出现在文章中吗?洋洋洒洒那么多 ...
2016-09-09统计学和数据挖掘关系 1. 简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数 ...
2016-09-08一个资深数据人对数据挖掘解读 在银行做了两年的数据分析和挖掘工作,较少接触互联网的应用场景,因此,一直都在思考一个问题,“互联网和金融,在数据挖掘上,究竟存在什么样的区别”。在对这个问题的摸索和理 ...
2016-09-08大数据挖掘中易犯的11大错误 0.缺乏数据(LackData) 对于分类问题或预估问题来说,常常缺乏准确标注的案例。 例如: 欺诈侦测(FraudDetection):在上百万的交易中,可能只有屈指可数的欺诈交易,还有很 ...
2016-09-08数据科学家、数据工程师、数据分析师,如何区分这三个大数据热门职业 随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会。数据科学家、数据工程师、数据分析师已经成为大数据行 ...
2016-09-08App数据分析的目的及运营该关注那些数据 有很多朋友说不知道数据运营该从哪里入手,该怎么运用统计平台的那些功能?产品初期应该关注哪些数据指标,怎样通过数据来准确定位产品问题并指导产品优化。 首先, ...
2016-09-08大数据分析的五个基本方面 1. Analytic Visualizations(可视化分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结 ...
2016-09-08有效数据分析的10个途径,让你更了解用户体验、行为及需求 收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户 ...
2016-09-07CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11