
App数据分析的目的及运营该关注那些数据
有很多朋友说不知道数据运营该从哪里入手,该怎么运用统计平台的那些功能?产品初期应该关注哪些数据指标,怎样通过数据来准确定位产品问题并指导产品优化。
首先,来看下统计分析对产品运营的价值,也就是 App 数据分析用来做啥?
1.1 快速打造数据运营的框架
其实每一个公司都应该有一个数据自己的数据运营的系统,来帮助相关 部门随时查看产品或者业务的进展。由于部门和在公司的角色不同,对数据的需求既有区别又有共通。比如一个做移动应用的公司,所有人都会关注新用户的增长,有多少用户是活跃用户等,这些都是跟产品的发展息息相关。投资人会关注你的用户留存率,来判断看产品发展是否健康,评估投资价值。
借助统计分析平台,开发者可以快速建立一个清晰的基础数据展示。让开发者不仅要知道产品运营的基本状况和使用状况,更要到了解用户到底是谁,发现用户深入的需求。
1.2 用数据推动产品迭代和市场推广
基础的数据运营框架对公司产品的整体发展状况会有一个很好的展现,但是创业者应该关注更加细节的部分。比如谁在用您的产品?用户是否喜欢?用户如何是如何使用的?市场推广带来的用户是否充分的使用了你的产品?哪些渠道带来的用户质量更高…….都可以用数据来回答这些问题。产品设计人员可以有针对性的对产品使用情况进行统计分析,了解用户对不同功能的使用,行为特征和使用反馈。这样可以为产品的改进提供很好的方向。
市场推广人员也不应该仅仅关注“什么渠道带来了多少用户”,更应该关注的是哪一个渠道带来的用户质量更高一些,ROI更理想。
1.3 盈利推手
盈利是最终目的。无论一款产品是否已经探讨出一个成熟的商业模式,创业者都应该借助数据让产品的盈利有一个更好进程。在产品货币化的路上,数据可以帮助创业者完成两件事:一,发现产品盈利的关键路径;二,优化现有的盈利模式。
第二个问题,App 数据运营,应该重点关注哪些指标,有哪些分类?
2.1 新增用户、活跃用户、启动次数
这些指标是KPI的主要评估标准;关注这些指标的每日趋势,您可以了解到应用每天发展是否正常、是否符合预期。
2.2 留存用户、留存率、流失用户
留存用户和留存率是评定一个应用用户质量的重要标准,用户留存率越高,说明应用越吸引用户。开发者在查看留存率时,可以关注留存率在一段时间内的变化趋势,并可以通过对比不同应用版本、不同分发渠道的用户留存率来评估版本和渠道质量或定位应用某些指标值下降的原因。
同时,反过来看用户流失率数据。对于流失用户的界定依照产品服务的不同而标准不同,对于微博和邮箱这类用户几乎每天登录查看的网站而言,可能用户未登录超过1个月,我们就可以认为用户可能已经流失了;而对于电子商务而言,可能3个月未登录或者半年内没有任何购买行为的用户可以被认定是流失用户。分析用户的流失情况可以找到流失的原因,针对产品所处的时期再找到解决办法。
2.3 用户行为指标:自定义事件、漏斗模型、页面访问路径
自定义事件是开发者为了达到收集某些数据的目的而设定的,比如推广链接的点击、去购物车结算的行为等,通过统计这些自定义行为的数据,获得更有针对性的信息。
漏斗模型是多个自定义事件按照一定顺序依次触发的流程中的量化转化模型。我们可以通过漏斗对应用中的一些关键路径进行分析,如注册流程、购物流程等,把控应用中的关键行为信息。
页面访问路径展示了用户是按照什么顺序访问了哪些页面,各页面的使用状况如何及页面之间是如何跳转的,能够帮助开发者了解各页面之间的跳转是否合理,主要流程是否容易被用户触发等。
2.4 其他指标
在日常运营中,开发者关注以上指标就能获得大部分所需要的信息。但其实还有很多其他指标如使用时长、使用频率、终端属性、地域等,包括说崩溃率分析等等,能帮助您获得更多用户使用行为的数据,为您升级版本时的终端适配提供依据、推广时针对不同用户群体的推送提供数据支持等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15