关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用
举个简单的例子
如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥
而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐
这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表
而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的意向),那么这时候系统是不是就能适当的将其他n-1个商品推荐给这个用户,因为其他很多用户在购买这个商品的时候会一起购买其他n-1的商品,将这n个商品做成一个套餐优惠,是不是能促进消费呢
这n个商品之间的关系(经常被用户一起购买)就是一个关联规则
下面介绍一个比较简单的关联规则算法---apriori
首先介绍几个专业名词
挖掘数据集:就是待挖掘的数据集合。这个好理解
频繁模式:频繁的出现在挖掘数据集中的模式,例如项集,子结构,子序列等。这个怎么理解呢,简单的说就是挖掘数据集中,频繁出现的一些子集数据
关联规则:例如,牛奶=>鸡蛋{支持度=2%,置信度=60%}。关联规则表示了a物品和b物品之间的关系,通过支持度和置信度来表示(当然不只是两个物品之间,也有可能是n个物品之间的关系),支持度和置信度定义的值的大小会影响到整个算法的性能
支持度:如上例子中,支持度表示,在所有用户中,一起购买了牛奶和鸡蛋的用户所占的比例是多少。支持度有一个预定义的初值(如上例中的2%),如果最终的支持度小于这个初值,那么这个牛奶和鸡蛋就不能成为一个频繁模式
置信度:如上例子中,置信度表示,在所有购买了牛奶的用户中,同时购买了鸡蛋的用户所占的比例是多少。和支持度一样,置信度也会有一个初值(上例中的60%,表示购买了牛奶的用户中60%还购买了鸡蛋),如果最终的置信度小于这个初值,那么牛奶和鸡蛋也不能成为一个频繁模式
支持度和置信度也可以用具体的数据来表示,而不一定是一个百分比
apriori算法的基本思想就是:在一个有n项的频繁模式中,它的所有子集也是频繁模式
下面来看一个购物车数据的例子
TID表示购物车的编号,每行表示购物车中对应的商品列表,商品为i1,i2,i3,i4,i5,D代表整个数据表
apriori算法的工作过程如下图:
(1)首先扫描整个数据表D,计算每个商品的支持度(出现的次数),得到候选C1表。这里将每个独立的商品都看成一个频繁模式来处理,计算它的支持度
(2)将每个商品的支持度和最小支持度作对比(最小支持度为2),小于2的商品将被过滤,得到L1。这里每个商品的支持度都大于2,所以全部保留
(3)将L1和自身进行自然连接操作,得到候选C2表。也就是进行L1*L1操作,将L1进行全排列,去掉重复的行得到候选C2(如,{i1,i1},{i2,i2}等),C2中的每个项都是由两个商品组成的
(4)再次扫描整个表D, 计算C2中每行的支持度。这里将C2中的每行(两个商品)都当做一个频繁模式计算支持度
(5)将C2中的每项支持度和最小支持度2作比较,过滤,得到L2。
(6)在将L2和自身做自然连接得到候选C3。L2*L2的结果为:{i1,i2,i3},{i1,i2,i5}{i1.i3,i5}{i2,i3,i4}{i2,i3,i5}{i2,i4,i5},{i1,i2}和{i1,i3}的结果为{i1,i2,i3},计算方式为:前n-1个项必须是一致的(就是i1),结果就是前n-1项+各自的第n项(i2,i3)。那么为什么产生的C3中只有{i1,i2,i3},{i1,i2,i5}呢,回头看看apriori算法的基本思想,如果第三个{i1,i3,i5}也是频繁模式的话,那么它的所有子集也应该是频繁模式,而在L2中无法找到{i3,i5}这个项,所以{i1.i3,i5}不是一个频繁模式,过滤。最终结果就是C3
(7)再次扫描整个表D,计算C3中每行的支持度。这里将C3中的每行(三个商品)都当做一个频繁模式计算支持度
(8)将C3中的每项支持度和最小支持度2作比较,过滤,得到L3
由于整个表D最多的项是4,而且只出现一次,所以它不可能是频繁模式,故计算到三项的频繁模式就可以结束了
算法的输出结果应该是;1,L2,L3集合,其中每个项都是一个频繁模式
例如我们得到一个频繁模式{i1,i2,i3},能够提取哪些关联规则?
{i1,i2}=>i3,表示购买了i1,i2的用户中还购买了i3的用户所占的比例。{i1,i2,i3}的出现次数为2,{i1,i2}的出现次数为4,故置信度为2/4=50%
类似的可以算出
{i1,i3}=>i2,confidence=50%
{i2,i3}=>i1,confidence=50%
i1=>{i2,i3},confidence=33%
i2=>{i1,i3},confidence=28%
i3=>{i1,i2},confidence=33%
也就是说,当一个用户购买了i1,i3的时候系统可以将i2一起当做一个套餐推荐给用户,因为这三个商品频繁的被一起购买
但是,通过对算法整个过程的描述,我们可以看到,apriori算法在计算上面的简单例子中,进行了3次全表扫描,而且在进行L1自然连接的时候,如果购物车项的数据是很大(比如100),这时候进行自然连接操作的计算量是巨大的,内存无法加载如此巨大的数据
所以apriori算法现在已经很少使用了,但是通过了解apriori算法可以让我们对关联规则挖掘进一步了解,并且可以作为一个比较基础,和其他关联规则算法做对比,从而得知哪个算法性能好,好在哪里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03