
避免大数据分析的思维陷阱
大数据分析可以追溯到30年前, 那时在数据分析界, 人们认为数据分析的工具和算法已经可以深度分析出任何东西, 所欠缺的就是数据量。 数据分析师们的说法就是, 如果你能够让我测量一切数据, 追踪一切数据, 从微观的精确到分钟的销售, 精确到每个人的资源消耗,到宏观的变量如利率的变化等, 我就能够告诉你想知道的一切, 这些变量之间的相关性, 它们的变化趋势等等一切的一切。
这种说法一直是主流数据分析界的看法。 到了今天, 数据量已经不成问题了。 互联网的几乎能够找到你需要的任何数据。 想要知道宾夕法尼亚州的工业清洗设备的销售与该州的钢铁厂的设备使用的关系? 没问题, 想要提高用户满意度? 可以把用户投诉数据采用聚类算法进行聚类。 你动动鼠标, 很多数据就能够找到了。
大数据的“罗生门”
好了, 现在的问题, 已经不是数据不够的问题了。 分析师不能再说“我的分析方法没问题, 只要有足够的数据。 ”如今, 数据的丰富程度已经足以满足任何分析方法的需要。 相反, 分析师需要考虑的是“什么样的分析方法最合适”以及“这些数据到底能告诉我们什么”。
这很自然地带来了另一个问题, 这个问题可能是大数据带来的真正问题。 那就是:现有的数据, 多的可以让你想要分析出什么结果, 就能分析出什么结果。
有一句话叫做:“这个世界上有两种谎言, 第一种叫谎言, 第二种叫统计”。 我们的大脑有一种无与伦比的能力, 那就是发现规律的能力(即便是其实没有规律)。
达顿商学院的教授曾经在班上做过这样一个实验:他找了两个学生, 其中一个学生, 用随机数生成器 生成一个数列, 数列里的每个数, 都是1 到10 之间的一个随机整数。 另一个学生, 则写同样长度的一个数列, 数列中的每个数, 这个学生可以随机地写从1到10 之间的一个整数。 教授让第三个学生, 把这两个学生生成的数列给他看。 他几乎每次都能正确地判断出那个数列是真的随机数列, 哪个数列是人工写的。 那些看上去有规律, 或者常有连续重复数字的, 是随机数列。 而人工写成的数列, 则尽量避免出现规律性或者重复性。 为什么呢? 因为我们总潜意识里, 会认为有规律性或者重复性的东西, 一定有它的原因, 就不可能是随机的。 因此, 当我们看到任何有点规律的模式时, 我们就会认为一定有一些非随机的因素。
这种潜意识其实来自于我们在自然界的生存本能。 当你看到草丛晃动的时候, 你宁可认为是有一只老虎在那边, 也比认为是“随机的” 风吹的, 而最后跳出一只老虎来强。
用“小实验”来验证“大数据”
如何才能避免掉入这样的认知陷阱呢? 可以采用达顿商学院教授Jeanne Liedtka所提倡的“小规模实验”的方式。 “小规模实验”与“大数据挖掘”的区别在于, “小规模实验”是特别设计来验证那些凭借分析工具(或者在分析工具帮助下的想象力)所“发现”的规律的正确性。 设计小规模试验的关键, 就是用实例去验证你发现的规律。 如果验证结果是正确的话, 那么规律或模式的可信度就提高了。
为什么要“小规模”呢?因为, 在海量数据加上分析工具, 可以让我们去发现无数的规律和模式, 而对每个规律或模式去验证会投入资源(时间以及金钱)。 通过把实验数据量的规模减小, 我们就可以更快更有效地验证更多的可能性。 这样也就能够加快企业的创新过程。
如何进行“小规模实验”, 要根据具体情况看。 一般来说, 实验会采用大数据分析所用的数据集。 从中取出一部分子集进行分析, 发现的规律, 通过另一部分数据子集进行验证, 如果规律在验证数据子集中也存在的话, 再利用大数据数据集采集的方式采集新的数据, 进一步进行验证。
保险公司Progressive Insurance以及信用卡公司Capital One是两个利用数据分析成功取得竞争优势的公司。 在他们的实践中, 他们就很好地采用了这样的“大数据, 小实验”的方式, 他们意识到我们天生的那种发现“并不存在的”规律的能力的危险性, 因此,他们利用小规模试验的方式, 从而使得他们能够快速有效地进行数据挖掘。
海量数据加上分析工具, 使得数据分析现在是一个很热的话题。 很多企业认为数据分析师能够“点石成金”。 但是,常言道: “人们看到的是他们想要看到的东西。” 今天, 我们有了海量数据和能“发现任何规律”的分析工具后, 还是不能忘记那个最古老的办法——用小规模的实验去验证。 否则的话, 几百万上千万美元的大数据投资, 可能发现的只是我们想象出来的“规律”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25