
不知该看哪些数据?卖家每日必看的6个数据
数据分析的重要性不用赘述,想必卖家们也心知肚明,但是在每日的店铺运营中该看哪些数据,如何分析哪些数据,确是卖家们每日最头疼的问题,学不会数据分析?卖家每日必看的6大数据。
2016年,阿里在众多大会中,多次提及数据运营,并把其列入三项未来核心趋势的之一,数据化运营也被越来越多的商家所接受,如果你是淘宝从业者,学会分析数据能够大幅度提升你的创业成功机率。但是有哪些电商数据是必要分析掌握的呢?
不是每一款都可以成为爆款的,每一爆款的形成都离不开数据分析。做淘宝最开始的工作肯定是选款,选款当然不能靠感觉,看感觉去选款基本都是耍流氓。关于选款网上有很多的比较系统的文章,这里我就不复述了。做简单的方法就是,可以去看TOP卖家的次推款,这些都是比较不错的。
PS:这里会有人问,为什么不是去做Top商家的主推款呢?因为必然有很多人去复制主推款,价格竞争会很大,一般的卖家没有竞争力,所以建议去做次推款。
测款的目的主要是测试点击率、收藏率、加购率。测款之前标题优化的工作必须做好。
测款可以用自然流量测,也可以用直通车测。自然流量时间会花费的长一些,直通车花费的钱会多一些。今天我们主要说下直通车测款。
2.1直通车的步骤如下:
A、准备好测试图片;
B、全部设置相同的创意标题(这样就能看出是哪里的问题);
C、数据分析,选出点击大于100以上的创意进行对比,如果数据能够更大更好,因为只有数据大,才更有参考性;
D、然后和其他的图片进行对比,重复,直到点击率达到点击率均值及以上。
2.2有了以上的数据之后,我们需要的就是数据分析,具体要看的数据如下:
以上三个数据要综合考虑,综合考虑后的数据才是最准确的。
推广阶段对于宝贝流量的爆发有至关重要的作用。在这里我们需要关注的数据如下:
新品期的点击率对于流量的提升比转化率都要高,那么点击率从哪里去看呢?大家看下图:
具体的路径是:生意参谋-经营分析-商品效果。
PS:
1、点击率不能低于2%,如果能够保证10%以上的点击率,你的手淘流量会很容易的爆发起来。
2、点击率低于2%的话,一定要去分析原因,尽快解决。影响点击率的主要因素有:主图、价格、基础销量。
3、以上数据的选择需要注意如下几点:
A、端口选择PC端,因为只有PC才有点击率的数据,但是在大数据下,这个指标也是准确的。
B、如果数据不够大的话,时间选择7天,只有大数据才会准确。
同样,新品期的收藏率、加购率的权重也是非常的大,大家看下图:
具体的路径是:生意参谋-经营分析-商品效果。
PS:
1、如果你能够保证10%以上的数据,你的手淘流量会很容易的爆发起来。当然,你可以用一些非常规手段,这些你懂得。
2、影响收藏率、加购率的主要因素有:详情页、活动、客服技巧、评论、问大家。
3、以上数据的选择需要注意如下几点:
A、数据选择全部。
B、如果数据不够大的话,时间选择7天,只有大数据才会准确。
C、上面是收藏加购的人数,收藏率、加购率的算法是除以商品访客数就可以了。
随着时间的推移,基础销量的积累及客户评论的出现,转化率的权重越来越高。
查看转化率的路径是:生意参谋-首页-核心指标。如下图:
在一段时间之后,转化率的权重逐步增加。随之时间的推移,转化率稳步提高(如果用的是非常规手段,建议别超优秀均值),这样权重会提高更快的。
三、流量爆发之后需要关注的数据1、跳失率
查看跳失率的路径是:生意参谋-首页-流量分析
影响跳失率的主要原因是详情页、评论、问大家。在流量起来之后我们首要的任务是做好关联销售,好处如下:
1、 降低跳失率,提高停留时间。
2、 提高转化率,提高每一个流量的价值。
2、评论维护
客户的评论是检测我们产品和服务最直接的因素。所以客户的评论我们一定要去认真分析,防微杜渐,别有了不能解决的问题再去重视。
3、DSR
DSR就是常说的动态评分,查看路径是:卖家中心首页右侧,如下图:
店铺动态评分是指在淘宝网交易成功后,买家可以对本次交易的卖家进行如下三项评分:
A、 宝贝与描述相符
B、 卖家的服务态度
C、 物流服务的质量。
每项店铺评分取连续六个月内所有买家给予评分的算术平均值。(每天计算近6个月之内数据)。只有使用支付宝并且交易成功的交易才能进行店铺评分,非支付宝的交易不能评分。
这个指标我们一定要去每天统计,连续五天下滑,一定要去引起重视。如果下滑,去分析原因。最简单的方式去发一批顺丰快递,以为大部分的评分都是因为快递引起的。
以上的数据做好,有个爆款不难的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16