
从技术架构的角度去丰富你的大数据知识
对于大数据的学习,很长一段时间,都觉得非常迷茫。不知道具体该学习什么!进而导致知识的知识点挺多,而自己所会的内容都不能够形成很好的体系,进而为自己的职场加分。而最近一直在学习相关大数的架构知识,进而具体到一个厂商。这样反而自己学的很快,总结一下前段时间的学习,温故而知新!!!
首先,大数据开始做为概念开始进入公众并在实际业务中落地是在13年。从一项技术的发展来看,这项技术会在18年形成一个很好的闭环。而在此期间,不管你是不是大数据的项目,在这五年内,只要冠以大数据名称都可以获益。
所以,大数据第一件能做的事就忽悠!不管你是不是大数据的项目,只要是你懂一点分布式,知道一点Hadoop,Spark。就可以去说我可以承接相关的项目,这是相关冒险的。因为当你不能够对大数据有一个整全的理解,而是靠着在实际工程中不断的学习进而再去指导并优化工作。这样做无异于事倍功半!所以回归到题目的方向,就是如何从技术架构的解度去丰富你的知识。
1,存储
大数据,顾名思义。就是你的数据量很大,传统的数据有EXCEL,TXT,WORD........刚开始这些还可以存储到硬盘上。但多到一定程度,势必会影响你开机的速度,这时,就要引入数据库的概念来存储。而你用数据库来存数据时,就又要涉及要你与数据库的对话语言--SQL语句。
单点,结构化的数据完成了以后,你的工作效率得到了很大的提升。相邻城镇的人看着这样不错的时候,就也开始了相应的部署。但数据库内容还是要和总部链接的。这样就形成了我们常说的分布式存储。
随着经济的不均衡发展,各种地区推出的营销活动不同。所要存储用户的信息也不同。这样就造成了传统结构化的存储效率下降,转而改变为用户单一ID+相关行为的非结构化数据的存储。
好了,存完了数据,放到那里呢,放在硬盘上的起名叫Hadoop,放在内存中的就叫Spark.
2,计算
任何的数据都是要参于到运算当中来的,而在运算的过程中是一定要调用CPU的,而传统的高帅富的大型机在高性能运算上是有优势的。可在大数据如海水一般的涌来时,这些高帅富的大型机就不好起到作用了。
还是老祖宗的智慧过人,分而治之。这是治水的思路,也是解决一个高帅富面对众多请求时不知所措的茫然。在技术上,用100台PC或小型机来分而治之所涌来的数据。然后再统一汇报解决情况。这个也就是大数据里边常说的那句话:100个穷吊丝相当于一个高富帅!这是第一种计算方案。
那还有一种是什么呢!类似于周伯通的左右互博击,你想想,你一台PC可以做的事情,我再加一颗CPU,是不是就相当于模拟出来两套。而这样计算的好处是可以将数据分类处理,而这一方面,在技术上是通过虚拟化来实现的。
3,可视
讲完了前边的基础之后,我们就来看看数据展现,数据的展现有许多种,而这一部人是需要代码人员有一些艺术细胞的(什么,没有!那艺术细菌也行)。
毕竟,要将你所计算的结果呈现现大众面前。相应的逻辑清楚就一点就显得非常重要。在这方面,建议多看一些其他人的优秀作品。更重要的是你要具备一些心理学的知识,数据的突显及策略的把控。可以说,大数据项目的成败基本上就是在可视的这一块是否能产生效果了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10