
实战数据分析决策的3个理念
在过去工作经历里,外企给人最深的印象是“数据导向”,理性和数据是跨越文化隔阂,进行平等沟通的桥梁;而在国内企业,“经验导向”是主流,数据的作用主要是“辅助证明经验得到的想法”。
两者的优劣本文不展开讨论,但有一点是很显著的,在培养新人团队方面,理性和数据的方法更容易操作。而经验论,是所谓的“外师造化,中得心源”,模糊点拨,自己领悟,用这种“散养”方式培养艺术家是可以的,但是用来培养具备数据意识的互联网产品运营团队,显然是不靠谱的。
可能读到这里,有人会说:
刚毕业的新手理论头头是道,但不能独立运用,缺了什么呢?
学校的运筹/决策学的知识,都基于一个假设:信息是相对充分和正确的。如果不太充分、不太正确呢?只能吐槽么?
本文认为,信息充分的情况下如何数据化决策应该是“极端特例”,“信息不充分情况下如何数据化决策”才是常态。
我们知道,经济学的基础假设是,资源是“稀缺”的,经济学就是在资源不够的情况下如何“do more with less”。能够真正用于实战的数据分析决策,也应该立足于承认和正视“信息不是充分的”。
常见的问题例如,由于埋点问题,数据不全,那么究竟“不全”到什么地步,是否可以量化,是否有其他数据可以互相佐证,在这些基础上,利用已有数据已经可以做很多事情。
隔壁部门/合作方不愿意分享充足的信息,导致预测和实际数据结果差异很大?这也是非常常见的情况。抱怨是没有任何意义的,影响数据的还有大量天灾,相比这些来说,其实隔壁部门提供的数据,有多少偏差还更容易预知一些,毕竟那是有“目的”的,而天灾是无“目的”的。
绝大部分“有目的偏差”的数据,例如活动作弊,刷优惠,客观情况就位于“目的”两级的中间(比如说俄罗斯和土耳其双方的新闻,往中间归纳就比较接近真相)。
预测时就容纳黑天鹅,将异常因素纳入考虑,数据预测也和程序一样,有所谓“健壮性”,能够一定程度上容纳意外情况,而“留余地”程度的多少是可以通过对比测试,不断逼近合理值的。
为什么数据分析周全的方案一再被上级否决,常见的心灵鸡汤会说,因为上级看到更多的信息,因此“信息更多的一方决策比信息更少的一方要科学”,这是典型的“找借口”说法,不仅相当消极,而且容易引导人惰于思考,渐渐远离理性,投身于追逐权力。
之前我们提过,现实生活里根本就没有信息充分的情况,更可能的是,执行层拥有更多的信息(解释了为什么“权力下放”的互联网企业胜算更大),况且即使是最高层,也无法预测新的竞争对手和行业政策巨变。数据分析如果切入面独特,逻辑完整,而且留有健壮容错性,完全有“一沙看穿一世界”的可能,这也是玩数据在精神上最过瘾的地方。
本文是随手一口气打完,没有太多雕琢,初衷是,如果以后想教小朋友用数据分析来解释世界,不希望说类似“如果实际情况不满足假设,那就随机应变吧”,感觉这样真的是世界上最失败的老爸了。。。。。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04