R语言之纵向数据分析:多级增长模 上一次,我们讨论了如何对长型数据转换成长型的数据,同时还是用了一个随机创建的对照实验数据集来对其增长趋势进行可视化。但是,我们是否能够进一步的分析并预测结果的增长 ...
2016-10-17R数据分析案例:逻辑回归 逻辑回归,也称之为逻辑模型,用于预测二分结果变量。在逻辑模型当中,输出结果所占的比率就是预测变量的线性组合。 这篇文章将要使用下面这几个包,而且你们需要保证在运行我所举 ...
2016-10-17R语言多项式回归 含有x和y这两个变量的线性回归是所有回归分析中最常见的一种;而且,在描述它们关系的时候,也是最有效、最容易假设的一种模型。然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的, ...
2016-10-17如何使用线性回归分析来预测发电厂的发电量 在这篇文章中,我将会教大家如何通过拟合一个线性回归模型来预测联合循环发电厂(CCPP)的发电量。这个数据集则来自于UCI Machine Learning Repository。这个数据集 ...
2016-10-17数据分析师,少一点套路,多一点思路 数据分析师在如今大数据时代有着举足轻重的地位。一个出色的数据分析师是能够通过自身对公司业务的理解,为各个层面提供有效,可靠的信息,并对其进行评价和预测。 作为一 ...
2016-10-16如何成为一名真正的数据分析师或者数据工程师 一.入门:高屋建瓴 数据分析的坑很大,一开始走上这条路,就要明确基本的方向,依托于核心的思想,不然只会越走越偏,最后觉得山太高水太深,不了了之。 ...
2016-10-16手把手教你使用R语言的主成分分析对城管事件数据分析 概念性的东西就不说那么多了,这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里 ...
2016-10-16大数据分析流程 这篇文章来自一个公司内部的分享,是自己所服务的业务中数据平台的发展历程,已经讲了有几个月了,最近打算挑几个点拿出来用文章的形式写出来。是自己进入公司以来参与过或者接触过的数据型项目 ...
2016-10-16数据挖掘工程师的面试问题与答题思路 机器学习、大数据相关岗位根据业务的不同,岗位职责大概分为: 1、平台搭建类 数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能 ...
2016-10-16商业数据挖掘的13种应用场景,你了解多少 数据挖掘涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、产品结构优化与新产品开发、财务成本优化、市场结构的分析和客 ...
2016-10-16数据分析方法:非参数检验 前面介绍了T检验和方差分析,它们解决的是正态分布的高测度数据的均值差异性问题。对于非正态分布的高测度数据,T检验或方差分析的方法就不再适用了。 均值差异性的检验方法:Z检 ...
2016-10-15透析数据分析与数据挖掘的区别 数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策. 从分析的目的来看 ...
2016-10-15一个公式、五大指标帮你构建产品经理数据分析思维 1. 了解业务,熟悉数据框架、体系 了解你的业务是做什么的,业务的发展规划有什么,衡量的核心指标有哪些,列出KPI或是核心指标,一般重点指标就那么几个; ...
2016-10-158个数据分析方法,指导营销策略 营销是企业根据目标用户的需求提供产品和服务,实现盈利的一切经营活动,关于营销的数据分析,有哪些工作可做,该怎么做? 分析思路 1、对谁营销-用户行为的分析 用户 ...
2016-10-15数据分析,你真的准备好了吗 最近很多同学咨询新手如何入门数据分析的事情,虽然网上类似的文章不少,但还是根据同学们的问题作了梳理回答。本文主要从职业选择角度解析数据分析适合的人群以及入门所需的基本准 ...
2016-10-15用R做一个灵活的时间序列数据可视化工具 一、数据可视化的烦恼 数据分析师经常需要看数据。通常而言,数据或存放在MySQL数据库,或存放在Hadoop集群,或存放在阿里云的ODPS上。分析师根据业务需求写SQL语句 ...
2016-10-15实际工作中的数据挖掘流程 数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析( ...
2016-10-14数据科学家/统计学家应该养成哪些好习惯 1、永远不要轻信自己的分析结果,多用业务和常识去检验。 很多时候,我们的分析都是含有一些潜在的假设,而在分析过程中被忽略。比如最经典的案例是在1948年,盖洛普 ...
2016-10-14从零开始学数据分析,新手教程攻略 所有从底层数据工作者往上发展的基本路径: 1. 第一阶段(一般岗位叫数据专员) 基本学会excel(VBA最好学会;会做透视表;熟练用筛选、排序、公式),做好PPT。这样很多传统 ...
2016-10-14数据分析师的职业进阶之路 数据分析师作为一个出现时间不长的工种,大数据时代下,成为螺丝钉还是成为龙头,需要尝试新的可能。” 数据分析师的职业规划 数据分析师手中拥有一座宝藏。作为滴滴出行数据分 ...
2016-10-14Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04