R语言之纵向数据分析:多级增长模 上一次,我们讨论了如何对长型数据转换成长型的数据,同时还是用了一个随机创建的对照实验数据集来对其增长趋势进行可视化。但是,我们是否能够进一步的分析并预测结果的增长 ...
2016-10-17
R数据分析案例:逻辑回归 逻辑回归,也称之为逻辑模型,用于预测二分结果变量。在逻辑模型当中,输出结果所占的比率就是预测变量的线性组合。 这篇文章将要使用下面这几个包,而且你们需要保证在运行我所举 ...
2016-10-17
R语言多项式回归 含有x和y这两个变量的线性回归是所有回归分析中最常见的一种;而且,在描述它们关系的时候,也是最有效、最容易假设的一种模型。然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的, ...
2016-10-17如何使用线性回归分析来预测发电厂的发电量 在这篇文章中,我将会教大家如何通过拟合一个线性回归模型来预测联合循环发电厂(CCPP)的发电量。这个数据集则来自于UCI Machine Learning Repository。这个数据集 ...
2016-10-17
数据分析师,少一点套路,多一点思路 数据分析师在如今大数据时代有着举足轻重的地位。一个出色的数据分析师是能够通过自身对公司业务的理解,为各个层面提供有效,可靠的信息,并对其进行评价和预测。 作为一 ...
2016-10-16
如何成为一名真正的数据分析师或者数据工程师 一.入门:高屋建瓴 数据分析的坑很大,一开始走上这条路,就要明确基本的方向,依托于核心的思想,不然只会越走越偏,最后觉得山太高水太深,不了了之。 ...
2016-10-16
手把手教你使用R语言的主成分分析对城管事件数据分析 概念性的东西就不说那么多了,这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里 ...
2016-10-16
大数据分析流程 这篇文章来自一个公司内部的分享,是自己所服务的业务中数据平台的发展历程,已经讲了有几个月了,最近打算挑几个点拿出来用文章的形式写出来。是自己进入公司以来参与过或者接触过的数据型项目 ...
2016-10-16
数据挖掘工程师的面试问题与答题思路 机器学习、大数据相关岗位根据业务的不同,岗位职责大概分为: 1、平台搭建类 数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能 ...
2016-10-16
商业数据挖掘的13种应用场景,你了解多少 数据挖掘涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、产品结构优化与新产品开发、财务成本优化、市场结构的分析和客 ...
2016-10-16数据分析方法:非参数检验 前面介绍了T检验和方差分析,它们解决的是正态分布的高测度数据的均值差异性问题。对于非正态分布的高测度数据,T检验或方差分析的方法就不再适用了。 均值差异性的检验方法:Z检 ...
2016-10-15透析数据分析与数据挖掘的区别 数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策. 从分析的目的来看 ...
2016-10-15
一个公式、五大指标帮你构建产品经理数据分析思维 1. 了解业务,熟悉数据框架、体系 了解你的业务是做什么的,业务的发展规划有什么,衡量的核心指标有哪些,列出KPI或是核心指标,一般重点指标就那么几个; ...
2016-10-15
8个数据分析方法,指导营销策略 营销是企业根据目标用户的需求提供产品和服务,实现盈利的一切经营活动,关于营销的数据分析,有哪些工作可做,该怎么做? 分析思路 1、对谁营销-用户行为的分析 用户 ...
2016-10-15
数据分析,你真的准备好了吗 最近很多同学咨询新手如何入门数据分析的事情,虽然网上类似的文章不少,但还是根据同学们的问题作了梳理回答。本文主要从职业选择角度解析数据分析适合的人群以及入门所需的基本准 ...
2016-10-15
用R做一个灵活的时间序列数据可视化工具 一、数据可视化的烦恼 数据分析师经常需要看数据。通常而言,数据或存放在MySQL数据库,或存放在Hadoop集群,或存放在阿里云的ODPS上。分析师根据业务需求写SQL语句 ...
2016-10-15
实际工作中的数据挖掘流程 数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析( ...
2016-10-14数据科学家/统计学家应该养成哪些好习惯 1、永远不要轻信自己的分析结果,多用业务和常识去检验。 很多时候,我们的分析都是含有一些潜在的假设,而在分析过程中被忽略。比如最经典的案例是在1948年,盖洛普 ...
2016-10-14
从零开始学数据分析,新手教程攻略 所有从底层数据工作者往上发展的基本路径: 1. 第一阶段(一般岗位叫数据专员) 基本学会excel(VBA最好学会;会做透视表;熟练用筛选、排序、公式),做好PPT。这样很多传统 ...
2016-10-14
数据分析师的职业进阶之路 数据分析师作为一个出现时间不长的工种,大数据时代下,成为螺丝钉还是成为龙头,需要尝试新的可能。” 数据分析师的职业规划 数据分析师手中拥有一座宝藏。作为滴滴出行数据分 ...
2016-10-14在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26