
数据分析师的职业进阶之路
数据分析师作为一个出现时间不长的工种,大数据时代下,成为螺丝钉还是成为龙头,需要尝试新的可能。”
数据分析师的职业规划
数据分析师手中拥有一座宝藏。作为滴滴出行数据分析团队的负责人,刘普成发现了数据分析师通往卓越的秘诀:视野。数据分析提供了这样一种可能:它不是简单的技术工种,它是最具有潜力的一项工作,背后蕴藏着相当多的机会。
刘普成是中国最懂互联网数据分析的人之一。北大ccer硕士出身,做过公务员,这位业界资深的大牛,曾先后任职于百度、豆瓣、豌豆荚,对产品、设计、运营等互联网业务有着深刻的理解。现在,他担任滴滴出行数据分析团队的负责人,统筹这家体量巨大的公司随时产生的海量数据。
作为一个成长经历颇为不同的资深大牛,他认为,推动一个人进步的本质原因是开放的心态和兴趣。硕士毕业后,他没有像大多数同学那样出国读博,或顺理成章进入金融业,而是选择在中国互联网界进行数据方面的探索,寻找一些“新”的东西。随着专业能力的提升,又开始深入学习互联网行业的其他技能,拓展自己的知识领域。
八年时间,从一名普通的数据分析师,成长为精通技术和业务的数据科学家,刘普成发现,数据分析师在不同阶段需要掌握不同的能力,本质上,是让自己的视野更开阔。
他认为,不同层次的数据分析师,在力所能及的范围内做到最好,即为优秀:
初级:提出一个业务问题,可以用数据进行回答,并能保证合理的数据结构、与业务的关联度,以及,数据是对的。
中级:有能力独立完成高质量的数据分析报告,如产品规划、市场活动等,可以cover住从前期规划到中期细节完善再到后期评价分析的整个过程。
高级:独当一面的分析师,可以负责一个子产品(一组模块)级别的项目,带领一个团队来全面解决问题,把控手下数据分析师的工作质量。技术方面,能掌控数据分析的整个过程,对数据采集、埋点、造型、进入数据仓库的清洗有良好的手段。可以回答数据能够回答的任何问题。在这里,能与不能的定义边界是,数据分析师用尽了所有可以想到的办法。
“三到五年内应该可以达到中高级的水准,当然,这要看个人努力程度了。”他说。在技术提升的同时,数据分析师还必须考虑职业发展规划的问题。
数据分析师的职业发展,是八年来刘普成一直在思考的问题。产品、运营、研发等岗位的从业者,都有机会晋升为一家公司的核心成员,与之相比,数据分析的工作却没有非常明晰的上升通道,似乎常常局限在被需求的技术工种。
刘普成花了几年时间来提高自身技术水平,同时开始探索数据分析师的出路,逐渐发现, 数据分析恰恰是最具潜力的一项工作,只不过背后蕴藏的机会被大多数从业者忽略了。站在数据高地的人,更容易培养宏观、全面的视野,这为一个人的职业发展,带来了天然的优势。
数据分析师的进阶之路
数据分析师不能只成为一个技术专家,要成为可以影响公司运作的人。结合自身经历,刘普成认为数据分析师在进阶的道路上有如下选择:
1、成为数据技能超强的产品经理
产品经理的工作非常综合,既考验创意创新,也需要对用户行为和产品的逻辑进行深入的研究,经验丰富的数据分析师往往视野开阔,容易站在宏观层面去思考内在的联系。
优秀的数据分析师有好的产品感觉。以超强的数据分析能力作为背书,向产品经理发展,思维方式的优势,很容易让一个对数据敏感的产品经理脱颖而出。
2、成为数据指导业务的运营VP
数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。
心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。
3、成为管理或战略
事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。
强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。
4、成为博学广识的数据科学家
随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。
互联网行业的优势在于,与其他行业相比,这个领域的公司可以采集到全面的数据,并以此进行研究应用。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。
数据分析师千万不要认为自己只是一个技术人员。刘普成的经历,比起数据库、统计、业务理解程序等硬性技能,严谨的工作态度、良好的沟通能力、迅速的学习能力以及随时随地的好奇心,这四项软实力,是数据分析师突破自己的决定性因素。
从业多年,置身互联网行业,刘普成有一个特别深的体会:
数据分析师不要只站在岸边看业务岗位的同事们游泳。半年都不懂业务的数据分析师是没有进入状态的。从技术人员到公司核心,数据分析师需要用开放的好奇心不断拓宽知识的疆界。
结 语
数据分析师作为一个出现时间不长的工种,大数据时代下,具有良好的发展前景,但成为螺丝钉还是成为龙头,这里面的裂变和跃迁,需要每一个数据分析师怀着好奇心精神不断拥抱新的领域,尝试新的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15