京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家/统计学家应该养成哪些好习惯
1、永远不要轻信自己的分析结果,多用业务和常识去检验。
很多时候,我们的分析都是含有一些潜在的假设,而在分析过程中被忽略。比如最经典的案例是在1948年,盖洛普错误地预测了杜威能击败杜鲁门而当选总统,原因是多方面的,但是抽样中的潜在不平均是不可否认的!再比如有个人分析结果得到刚毕业的专科的平均薪资比同专业的本科要高,就找一堆理由来说明这个结论。但是领导说这个不符合常识,打回去重新分析。之后发现是因为样本男女比例不均衡导致的。所以,我们不要轻信自己的分析结果,尤其是不能给自己的分析找正向的理由!因为只有你找理由,总会能给自己的结论找到一堆理由。有多从实际出发,如果不符合常识,那就更要多方面论证,才能发声!否则,就会是个笑话!
2、阅读人文:数据科学不仅是一门科学,也是一门艺术。
数据科学,你可以认为是一门探索人性的科学。我经常跟周围做数据或者IT人的说的一点是,因为我们是做数据或者写一些代码的,这里的数字是1就是1,不会是2,TRUE了就不会是FALSE,所以做久了,人容易偏执,不会享受生活,那就无法把艺术引进!这里也举一个例子,美国有一家大型商场,业务经理想能否预测一个客户是否是孕妇,以此来针对性的营销呢?之后他们的数据科学家通过分析找到了一个模型来预测。那么他们是直接把孕妇相关产品推荐给客户吗?不是的,因为这个数据科学家不仅是数学好还是一个社会学家,他说如果全部推荐相关产品,那么客户会觉得自己的隐私被侵犯,甚至会觉得反感,所以他的策略是把真正想要推荐的东西放在一堆其他东西里。当然,这里只是简写,实际过程非常有趣。
3、了解行业信息和业务信息
这一点非常重要。分析和挖掘,最终都是要落到具体的业务上来的。所以做数据,不能脱离业务和行业规律。了解行业信息,能够让你在分析的时候更加的接地气、更好的把握分析框架!尤其是,联系刚才说的第一点,你积累的行业信息和业务信息都会帮助你检验你的分析,同时让你更还的认识到什么样的分析是有价值的分析。此外,对于业务中的乱七八糟的各种概念更是要深入理解,不能停留在表面。有时候,一个业务概念理解失误(比如0是否有参与计算),会导致分析出完全相反的结论。据说,数据分析会导致经验累积加速,简单的说一般业务人员工作10年的工作经验,数据分析5年就能掌握。
4、好奇心与多沟通
爱因斯坦说过,提出一个好问题比找到一个合适的答案更重要!在我个人经验中,按照既定的一些分析框架分析,一般都只是完成了既定的任务而已。但是,你对分析中的一些异常多问几个为什么,很容易找到一些业务的突破口。比如你分析销售业绩,你发现一个人,成单比例总是比别人高,甚至有时候比特别有经验的人还高,你就问问为什么呢?否则,你就只能发现这个数字而已。后来,你通过分析和直接询问等方法,发现他发现了新注册的用户容易成单,所以每天盯着新用户呢!当然,这样的例子是比较多的,比如为什么要让用户自己选择一些信息呢?然后一个数据产品就出来了。
5、多实践与多走一步
这里涉及到模型了,也是我个人做的比较多的地方。在数值计算(或者任何其他工程领域)里,知道一个东西的基本算法和写出一个能在实际中工作得很好的程序之间还是有一段不小的距离的。有很多可能看似无关紧要的小细节小 trick,可能会对结果带来很大的不同。当然这样的现象其实也很合理:因为理论上的工作之所以漂亮正是因为抓住了事物的主要矛盾,忽略“无关”的细节进行了简化和抽象,从而对比较“干净”的对象进行操作,在一系列的“assumption”下建立起理论体系。但是当要将理论应用到实践中的时候,又得将这些之前被忽略掉了的细节全部加回去,得到一团乱糟糟,在一系列的“assumption”都不再严格满足的条件下找出会出现哪些问题并通过一些所谓的“engineering trick”来让原来的理论能“大致地”继续有效,这些东西大概就主要是 Engineer 们所需要处理的事情了吧?这样说来 Engineer 其实也相当不容易。这样的话其实 Engineer 和 Scientist 的界线就又模糊了,就是工作在不同的抽象程度下的区别的样子。
在工作和平时学习练习中,都是这样。很多人问的太多,做的太少,导致眼高手低。比如你问用Ensemble,会怎么怎么样呢?对哇,很多人能问这个问题,但是就是不去试一试。再比如,有偏样本的问题,有过抽样、欠抽样、阈值调整等等方法,都可以去自己实践一下,才会有更加直观的认识,否则只停留在讨论阶段是没用的。
多走一步,每个问题都是自己成长的阶梯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05