
数据分析,你真的准备好了吗
最近很多同学咨询新手如何入门数据分析的事情,虽然网上类似的文章不少,但还是根据同学们的问题作了梳理回答。本文主要从职业选择角度解析数据分析适合的人群以及入门所需的基本准备。准备投身于这行的年轻人们,你真的想好了吗?
1我合适数据分析吗
很多人选择大数据行业,选择数据分析更多看到的是这个岗位前景不错、薪资待遇也不错,各种培训让人看起来事情也挺简单。往往没有对岗位和自身进行合理评估,真正在求职或者入职之后或许才发现其实跟自己想的也许完全不一样。
其实在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗?知己知彼百战不殆,在做职业选择或者机会选择时可使用SWOT分析模型,更好的认识自己。
SWOT:优势(Strength)、劣势(Weakness)、机会(Opportunity)、威胁(Threat)。其中,优势与劣势是对自身条件的分析,机会与威胁是对外部环境的分析。
1个人优势与劣势分析(不限以下)
对于个人的评估,可以自己进行,也可以邀请朋友家人协助。全面客观的判断自我,对职业选择尤为重要。
1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗
2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开哦
3、学习能力:数据分析与IT行业一样,是需要持续保持学习状态的,这你能坚持么
4、沟通合作能力:数据分析师需要与业务部门、研发部门等频繁沟通和合作,这你擅长么
5、性格:动要能沟通、吵架,静要能分析写代码,这随意切换可以么?
对于你的缺点和补足:你可以考虑改进使之不再成为短板,比如学习数据分析的基本原理、技术、工具,但是兴趣、性格方面呢?或者放弃你技能不擅长的职业。
2行业机会与威胁分析(不限以下)
根据自己的优点和缺点,选择几个你感兴趣的行业和职业进行分析,了解他们的机会和威胁。所谓,“男怕入错行,女怕嫁错郎”,有前景的行业和职业对于个人选择来说有很大的影响。下面以大数据行业——数据分析岗位为例:
1、行业情况:毋庸置疑,大数据是21世纪很火热的行业之一,已经渗透到每一个行业和业务职能领域
2、企业情况:这家企业重视数据吗?有数据基础么?数据有所为么
3、岗位就业情况:只要你练好真本事,数据分析师是个高薪职业哦,而且人才缺口较大
4、岗位要求:需要发现问题、分析问题、解决问题的能力,你需要懂商业、提取处理分析数据、提出解决方案,一切不产出效果的数据分析都是耍流氓
职业选择:充分评估行业岗位及自身情况,扬长避短,选择自己喜欢擅长且有“钱景”和“前途”的职业,自测后,数据分析还是你的菜么?
2我需要准备什么
如果在做完个人SWOT分析之后,你毅然选择数据分析工作。那么恭喜你,你离21世纪最赚钱的职业之一已经不远了了,吼吼。
想要做好数据分析真的需要掌握多方面的知识和技能,主要分软+硬两大实力,软实力还包括沟通能力、表达能力、设计能力等;另外业务理解能力需要逐步积累。那么,对于入门,可从思维、心术、理论、工具四方面进行训练和事先判断。思维和心术主要靠性格和长期训练积累,下面主要介绍大家关注的理论和工具。
1我要看什么书
数据分析需要具备多方面的理论基础,比如基本的数据分析知识:统计、概率论、数据挖掘基础理论等;基本的商业常识:营销理论、战略管理等;数据处理知识:数据库、数据结构等。
但是对于新手而言,这实在是信息量太大了,所以在此阶段,能清晰地知道数据分析能解决什么问题、需要什么方法论、需要掌握什么基本技术及原理足够。记住,我们是入门,懂得常规知识并能找到基础的工作是我们的目标。
书籍推荐:
《统计学》——扎实统计基础
《谁说菜鸟不会数据分析》——了解基本知识、工具
《数据分析:企业的贤内助》——了解分析方法、案例
《金字塔原理》——训练思维能力
2我要学什么工具
为什么很多人学了Pyhon、Hadoop、R、Spss,依然做不好数据分析。
数据分析最关键的一定是理解业务的能力以及整理分析思路的能力,其次才是动手能力,也就是驾驭工具的能力。至于工具,不论黑猫白猫能解决问题就是好猫,不是说Hadoop就比Oracle强,pyhon就比spss厉害,不同的场景不同的背景对工具的使用也不同。
鉴于新手,推荐首先学习Excel+Sql+PPT,Excel的简洁和强大无需多说了,小规模的数据处理、分析、展示都可以搞定,对于稍大点规模的公司而言,Sql是必备的取数技术,没有数据源就等于是无源之水,所以数据查询和处理能力一定要具备。那为什么还要PPT?数据分析师很多时候的产出是分析报告,那么PPT的展示能力就格外重要,如何将你的结论简洁直观的传递给你的受众,是必备的能力。
工具推荐:Excel+Mysql+PPT
3还要准备什么
磨砺心志,主动寻找实践机会,优秀的数据分析师一定是主动发现问题、解决问题并扛得住压力的。人生是漫长而持续的过程,不必太计较眼前的得与失,如果方向对,慢点也是快。谨以此文,献给在路上的年轻朋友们!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29