如何使用线性回归分析来预测发电厂的发电量
在这篇文章中,我将会教大家如何通过拟合一个线性回归模型来预测联合循环发电厂(CCPP)的发电量。这个数据集则来自于UCI Machine Learning Repository。这个数据集包含5列,也就是说,它包含环境温度(AT)、环境压力(AP)、相对湿度(RH)、抽真空(EV)已经发电厂的电网每小时的发电量。前面4个变量作为属性,最后一个则作为因变量。
由于数据是xlsx格式,我们需要xlsx包。我们将提取数据文件中的第一个表格。
接下来,我们需要把数据集分成训练数据集和测试数据集。就像它们的名字所暗示的那样,训练数据集用于训练和建立模型,然后使用测试数据集对模型进行测试。现在,我们把75%的数据集作为训练数据集,和25%的数据作为测试数据集。我们可以按照下面的步骤操作:
现在,让我解释一下上面每一条指令所代表的含义。
第一,我们使用set.seed()函数使得数据具有可重复性。
然后,我们创建一个序列,使得它整个的长度等于数据集的行数。这些数字则作为这个数据集的索引。我们随机的从序列中选择75%的数据并把它存放到变量split中。
最后,我们把索引数组里所隐含的所有的行都复制到训练数据集中,把剩下的数据则放到测试数据集中。
现在,让我们预测一下这个模型。我们会使用lm()函数。
上面的这个函数将会尝试从AP、V、AP和RH来推测PE。由于我们使用了数据集里的所有变量,一个更简短的代码为(如果这个数据集的变量非常多,这样写效果会很不错):
我们现在用summary()来汇总一下这个模型:
这样帮助我们决定哪些变量在这个模型中具有相关性。一个线性模型的表达式可以写成 y_i = β_1 x_i1 + β_2 x_i2 + β_3 x_i3 + ⋯ + ε,其中y_i代表模型的预测输出,即因变量(PE)的预测值,而x_i则代表各个变量属性(AT、V、AP和RH),而β则代表系数,ε代表一个常数项。
summary的第一行,它列举了一些预测值。第一个值与ε有关,而剩下的则为各种属性变量的系数,如果这些系数为0或者接近0,说明这几个变量对预测几乎没有什么影响。因此, 我们需要把它们剔除掉。表示残差的那一列给出了一些估计值,表明了这些系数的变化幅度有多大。t值通过划分标准差列而计算出来的估计值。最后一列则预测这些系数(p(>|t|)的可能性,它与t值成反比。预测,一个属性计算出较高的t值或是较低的Pr(>|t|)的绝对值是可以接受的。
想要判断哪些变量具有较强的相关性,我们则可以通过观察它们的星星数进行判断。后面带三颗星的表明这种变量相关性最强。接下来是两颗星,最不想关的则为一颗星。变量的特征本身是否重要则通常没有被包含到预测模型的预测当中,如何这个变量与其它毫不相干,则这些变量都不重要了。
在我们的模型中,我们可以看到所有变量都重要。当你要处理一个数据集,这里含有多个不想关的变量的时候,建议在此同时先把无关变量删去。这时因为变量之间是高度相关的,其它则可能是显著的。这就归于它的多重共线性。你可以在这里找到更多关于多重共线性的内容。
想要知道模型的精度,最简单的方法就是查看它的判定系数。summary里提供了两个判定系数,即多重判定系数和调整判定系数。多重判定系数的计算过程如下:
多元判定系数=1-SSE/SST,其中:
SSE代表残差平方和。残差就是预测值与真实值之间的差,并可以由predictionModel$residuals来估算。
SST就是总平方和。它可以由真实值和均值之差的平方和计算出来。
比如说,我们有5、6、7和8这4个数,而模型的预测值分别为4.5,6.3,7.2和7.9。
然后,SSE可以这样计算:SSE = (5 – 4.5) ^ 2 + (6 – 6.3) ^ 2 + (7 – 7.2) ^ 2 + (8 – 7.9) ^ 2,而SST则要这样计算:mean = (5 + 6 + 7 + 8) / 4 = 6.5; SST = (5 – 6.5) ^ 2 + (6 – 6.5) ^ 2 + (7 – 6.5) ^ 2 + (8 – 6.5) ^ 2。
调整判定系数和多重判定系数很相似,但是它由变量的个数来决定。这意味着,在预测模型中,每增加一个变量,其调整判定系数也随之增加。但是,如果一个变量在预测模型中显示不相关,调整判定系数也会下降。关于更多判定系数的信息,请看这里。
调整判定系数为1的时候意味着,这是一个完美的预测模型;如果它为0,说明它没有在基准模型上有任何提高(基准模型就是预测它总与均值相等)。从summary来看,我们看到判定系数为0.9284,相当高了
现在,我们使用测试数据集来预测模型了。
现在,观察一下最初几个预测值,并与测试数据集上的PE的真实值作比较:
对于PE的真实值为444.37,我们的预测值为440.0433,而对于446.48,其预测值为450.5260,以此类推。
我们可以基于上面的利用测试数据集而模拟出的模型来计算其判定系数:
这里,我们来到了文章的末尾。我希望你能在此感到很享受,找到了它的价值。
数据分析咨询请扫描二维码
不过,在出题前,要公布上一期LEVEL II中61-65题的答案,大家一起来看! 62、B 64、B 你答对了吗? 66.关于单因素 ...
2024-10-05嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的146-150 ...
2024-10-055. 假设检验 久经考场的你肯定对于很多概念类题目里问到的 “区别和联系” 不陌生,与之类似,在统计领域要研究的是数据之间的区 ...
2024-10-05数据模型(Data Model)是对现实世界数据特征的抽象,用于描述一组数据的概念和定义。它从抽象层次上描述了系统的静态特征、动态 ...
2024-10-044. 区间估计 还以为你被上节课的内容唬住了~终于等到你,还好没放弃! 本节我们将说明两个问题:总体均值 的区间估计和总体比例 ...
2024-10-04大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-033. 数据分布 t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检 ...
2024-10-03大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-022. 描述性统计 上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。 我们描述一组 ...
2024-10-02大数据专业的毕业生可以选择多种就业方向和岗位,主要集中在数据分析、系统研发和应用开发三大领域。以下是一些具体的岗位: 大 ...
2024-10-011.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2024-10-01大数据的全球市场规模在 2023 年估计为 1850 亿美元,预计到 2030 年将达到 3834 亿美元,2023 年至 2030 年的复合年增长率为 11 ...
2024-09-30大数据分析是指收集、分析和处理大量数据以发现市场趋势、洞察力和模式,帮助公司做出更好的商业决策的过程。这些信息可以快速、 ...
2024-09-30大数据分析是当今世界一些最重要行业进步背后的推动力,包括医疗、政府和金融等领域。了解更多关于如何处理大数据以及开始时使用 ...
2024-09-30大数据已经成为日常生活不可或缺的一部分,影响着我们的活动。对大量数据的分析已经成为一个重要的行业,对大数据分析师的需求也 ...
2024-09-30数据分析师证书报名官网指南 数据分析师在现代企业中扮演着越来越重要的角色,掌握数据分析技能不仅能够提升个人职场竞争力,也 ...
2024-09-29大数据分析师培训学什么 课程简介 大数据分析师课程以大数据分析技术为主线,以大数据分析师为培养目标,从数据分析基础、linux ...
2024-09-29随着大数据在各行各业中的应用日益广泛,数据分析师这一职业变得越来越重要。作为一名数据分析师,不仅需要具备扎实的技术能力, ...
2024-09-29引言 在当今数字化转型的浪潮中,大数据分析师的角色变得愈发重要。作为这个领域的专业人士,拥有权威认证不仅能够提升个人职业 ...
2024-09-29数据架构师是企业中负责设计、规划和管理数据架构的关键角色。他们的职责广泛且复杂,涵盖了从数据模型设计到数据治理和管理的各 ...
2024-09-28