京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用线性回归分析来预测发电厂的发电量
在这篇文章中,我将会教大家如何通过拟合一个线性回归模型来预测联合循环发电厂(CCPP)的发电量。这个数据集则来自于UCI Machine Learning Repository。这个数据集包含5列,也就是说,它包含环境温度(AT)、环境压力(AP)、相对湿度(RH)、抽真空(EV)已经发电厂的电网每小时的发电量。前面4个变量作为属性,最后一个则作为因变量。
由于数据是xlsx格式,我们需要xlsx包。我们将提取数据文件中的第一个表格。
接下来,我们需要把数据集分成训练数据集和测试数据集。就像它们的名字所暗示的那样,训练数据集用于训练和建立模型,然后使用测试数据集对模型进行测试。现在,我们把75%的数据集作为训练数据集,和25%的数据作为测试数据集。我们可以按照下面的步骤操作:
现在,让我解释一下上面每一条指令所代表的含义。
第一,我们使用set.seed()函数使得数据具有可重复性。
然后,我们创建一个序列,使得它整个的长度等于数据集的行数。这些数字则作为这个数据集的索引。我们随机的从序列中选择75%的数据并把它存放到变量split中。
最后,我们把索引数组里所隐含的所有的行都复制到训练数据集中,把剩下的数据则放到测试数据集中。
现在,让我们预测一下这个模型。我们会使用lm()函数。
上面的这个函数将会尝试从AP、V、AP和RH来推测PE。由于我们使用了数据集里的所有变量,一个更简短的代码为(如果这个数据集的变量非常多,这样写效果会很不错):
我们现在用summary()来汇总一下这个模型:
这样帮助我们决定哪些变量在这个模型中具有相关性。一个线性模型的表达式可以写成 y_i = β_1 x_i1 + β_2 x_i2 + β_3 x_i3 + ⋯ + ε,其中y_i代表模型的预测输出,即因变量(PE)的预测值,而x_i则代表各个变量属性(AT、V、AP和RH),而β则代表系数,ε代表一个常数项。
summary的第一行,它列举了一些预测值。第一个值与ε有关,而剩下的则为各种属性变量的系数,如果这些系数为0或者接近0,说明这几个变量对预测几乎没有什么影响。因此, 我们需要把它们剔除掉。表示残差的那一列给出了一些估计值,表明了这些系数的变化幅度有多大。t值通过划分标准差列而计算出来的估计值。最后一列则预测这些系数(p(>|t|)的可能性,它与t值成反比。预测,一个属性计算出较高的t值或是较低的Pr(>|t|)的绝对值是可以接受的。
想要判断哪些变量具有较强的相关性,我们则可以通过观察它们的星星数进行判断。后面带三颗星的表明这种变量相关性最强。接下来是两颗星,最不想关的则为一颗星。变量的特征本身是否重要则通常没有被包含到预测模型的预测当中,如何这个变量与其它毫不相干,则这些变量都不重要了。
在我们的模型中,我们可以看到所有变量都重要。当你要处理一个数据集,这里含有多个不想关的变量的时候,建议在此同时先把无关变量删去。这时因为变量之间是高度相关的,其它则可能是显著的。这就归于它的多重共线性。你可以在这里找到更多关于多重共线性的内容。
想要知道模型的精度,最简单的方法就是查看它的判定系数。summary里提供了两个判定系数,即多重判定系数和调整判定系数。多重判定系数的计算过程如下:
多元判定系数=1-SSE/SST,其中:
SSE代表残差平方和。残差就是预测值与真实值之间的差,并可以由predictionModel$residuals来估算。
SST就是总平方和。它可以由真实值和均值之差的平方和计算出来。
比如说,我们有5、6、7和8这4个数,而模型的预测值分别为4.5,6.3,7.2和7.9。
然后,SSE可以这样计算:SSE = (5 – 4.5) ^ 2 + (6 – 6.3) ^ 2 + (7 – 7.2) ^ 2 + (8 – 7.9) ^ 2,而SST则要这样计算:mean = (5 + 6 + 7 + 8) / 4 = 6.5; SST = (5 – 6.5) ^ 2 + (6 – 6.5) ^ 2 + (7 – 6.5) ^ 2 + (8 – 6.5) ^ 2。
调整判定系数和多重判定系数很相似,但是它由变量的个数来决定。这意味着,在预测模型中,每增加一个变量,其调整判定系数也随之增加。但是,如果一个变量在预测模型中显示不相关,调整判定系数也会下降。关于更多判定系数的信息,请看这里。
调整判定系数为1的时候意味着,这是一个完美的预测模型;如果它为0,说明它没有在基准模型上有任何提高(基准模型就是预测它总与均值相等)。从summary来看,我们看到判定系数为0.9284,相当高了
现在,我们使用测试数据集来预测模型了。
现在,观察一下最初几个预测值,并与测试数据集上的PE的真实值作比较:
对于PE的真实值为444.37,我们的预测值为440.0433,而对于446.48,其预测值为450.5260,以此类推。
我们可以基于上面的利用测试数据集而模拟出的模型来计算其判定系数:
这里,我们来到了文章的末尾。我希望你能在此感到很享受,找到了它的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22