
深入浅出之数据分析四步曲
数据分析四步骤
确定
开始分析之前需要拿到足够的背景信息,更重要的是要和对方一起明确你们共同想要解决的问题/想要验证的假设,更更重要的是确定交付的内容、形式、期限以及可用资源。
未明确确定自己的问题或目标就进行数据分析就如同为定下目的地就上路旅行一样。
当然你可能会碰到一些有意思的现象,有时还可能盼着能兜来兜去地撞上点好东西,但是,谁会说你将有所发现。
分析师常常不够注重自己要解决的问题,他们抛给别人一些信息,借此推卸自己解决问题和建议决策的义务。
客户将根据你的分析作决策,你需要尽量多从他那里了解一些信息,才能确定问题。
你需要摸清对方的心思,才能拟定一个能够解决问题的分析方案。
对客户的了解越深,你的分析越有可能派上用场。
1. 将大问题划分为小问题
你需要将问题划分为可管理、可解决的组块。你无法直接回答大问题,但是通过回答从大问题分解出来的小问题,你就能找到大问题的答案。
2. 将数据分解为更小的组块
图表不会按照你的意愿去设定,你必须自己提炼出所需要精确答案的相关因子及量化值。
首先,将原始数据转化为汇总数据。
然后,找到感兴趣的比较对象分解汇总数据。
进行有效的比较是数据分析的核心。
定性的数据,比如那些背景信息,你也需要进行分解和提取,然后得到一些基础假设,用以分析定量数据。
认真审视之前分解出来的组块。
审视过程最关键的是,比较。
价格的比较,群体的比较,销量的比较,竞争者的比较,营销方案的比较。
然后,你需要堵上自己的信誉,基于比较做出一些假设,然后逐步检验自己的假设。
这个过程,你的心智模型就参与到了这些数据中,通过你的解读赋予数据意义。
比如,你基于一些数据得出的结论,图表,你可以注明是你的判断。
客户将根据你的分析作决策。
你提交给客户的报告要以得到客户理解、鼓励客户以数据位基础作出明智的决策为重点。
你的报告应当【简练】【专业】【直接了当】
报告应该说清楚对方的需求,你依据哪些信息得到哪些结论,给出建议。
数据要能体现市场的情况。
心智模型
你对外界的假设和你确信的观点就是你的心智模型。
心智模型决定你的观察结果,是你观察现实的棱镜。
你无法看到一切,因此你的大脑必须做出选择,以便集中注意力。
如果你了解自己的心智模型,那么你发现重点、开发最相关最有用的统计模型的可能性越大。
你的统计模型取决于你的心智模型,如果用了错误的心智模型,分析就会胎死腹中。
心智模型应当包括你不了解的因素
只要能明确不确定因素,你就会小心防范并想办法填补知识空白,继而提出更好的建议。
考虑不确定因素及盲点会让人感觉不爽,但回报显著。
原始数据
要保存原始数据,并习惯拿处理后的数据和原始数据进行比较
在密集的数据中兜圈子很容易让人“迷路”,要是你迷失了目标,忘记了假设,只要集中注意力完成该完成的数据处理就能扭转局势,优秀的数据分析的根本在于密切关注需要了解的数据。
为一个化妆品公司分析数据,发现广告投入减少,社交网络营销投入增加,但是销量却没有达到预期,即时降价也没能影响销量。给出的建议是重新提高广告投入,看看是否有效果。 后来看到一则新闻,得知该品牌的该产品在少女消费者群体中已接近饱和,增加广告投入没有太大价值。收集更多数据,重新分析后发现新的消费群体,老年男子用该产品做剃须后保养。给出的建议是推出针对老年男子须后保养的产品并推广。
中间经历了【心智模型转变】->【查看不确定范围】->【重新收集信息再分析】
EX: 您希望销量提高多少?您觉得我们怎样才能办到呢?您觉得销量提高多少是可行的?目标销量合理么?竞争对手销量如何?广告和社交网络投入是怎么考虑的?【知道什么】
EX:您对我们的目标客户了解么?目标客户唯一么?销售渠道如何?【不知道什么】
在分析过程中得到了一些错误的、不完整的信息,导致你给出的建议不符合实际。
数据分析是为了更好地决策:开始你需要明确你要解决的问题,最后要给出你的专业建议
所有的数据分析师最终都会被打造成能做出更好决策的人才,你要学的就是在浩如烟海的数据中洞察先机,作出更好决策。
总结
1. 分析之前要明确问题和范围,要找你的客户参与进来
2. 分析最重要的是分解,分解问题也分解数据,
3. 评估最重要的是比较,找到最有价值的比较
4. 评估的过程,你开始把自己已有的知识加入到其中,堵上自己的信誉
5. 分析之后一定要给决策,不要只是呈现一些结论
6. 觉察你的心智模型,因为它会对你的分析过程形成深刻影响
7. 时刻反思有哪些你默认的前提假设其实是未知或不确定的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26