
深入浅出之数据分析四步曲
数据分析四步骤
确定
开始分析之前需要拿到足够的背景信息,更重要的是要和对方一起明确你们共同想要解决的问题/想要验证的假设,更更重要的是确定交付的内容、形式、期限以及可用资源。
未明确确定自己的问题或目标就进行数据分析就如同为定下目的地就上路旅行一样。
当然你可能会碰到一些有意思的现象,有时还可能盼着能兜来兜去地撞上点好东西,但是,谁会说你将有所发现。
分析师常常不够注重自己要解决的问题,他们抛给别人一些信息,借此推卸自己解决问题和建议决策的义务。
客户将根据你的分析作决策,你需要尽量多从他那里了解一些信息,才能确定问题。
你需要摸清对方的心思,才能拟定一个能够解决问题的分析方案。
对客户的了解越深,你的分析越有可能派上用场。
1. 将大问题划分为小问题
你需要将问题划分为可管理、可解决的组块。你无法直接回答大问题,但是通过回答从大问题分解出来的小问题,你就能找到大问题的答案。
2. 将数据分解为更小的组块
图表不会按照你的意愿去设定,你必须自己提炼出所需要精确答案的相关因子及量化值。
首先,将原始数据转化为汇总数据。
然后,找到感兴趣的比较对象分解汇总数据。
进行有效的比较是数据分析的核心。
定性的数据,比如那些背景信息,你也需要进行分解和提取,然后得到一些基础假设,用以分析定量数据。
认真审视之前分解出来的组块。
审视过程最关键的是,比较。
价格的比较,群体的比较,销量的比较,竞争者的比较,营销方案的比较。
然后,你需要堵上自己的信誉,基于比较做出一些假设,然后逐步检验自己的假设。
这个过程,你的心智模型就参与到了这些数据中,通过你的解读赋予数据意义。
比如,你基于一些数据得出的结论,图表,你可以注明是你的判断。
客户将根据你的分析作决策。
你提交给客户的报告要以得到客户理解、鼓励客户以数据位基础作出明智的决策为重点。
你的报告应当【简练】【专业】【直接了当】
报告应该说清楚对方的需求,你依据哪些信息得到哪些结论,给出建议。
数据要能体现市场的情况。
心智模型
你对外界的假设和你确信的观点就是你的心智模型。
心智模型决定你的观察结果,是你观察现实的棱镜。
你无法看到一切,因此你的大脑必须做出选择,以便集中注意力。
如果你了解自己的心智模型,那么你发现重点、开发最相关最有用的统计模型的可能性越大。
你的统计模型取决于你的心智模型,如果用了错误的心智模型,分析就会胎死腹中。
心智模型应当包括你不了解的因素
只要能明确不确定因素,你就会小心防范并想办法填补知识空白,继而提出更好的建议。
考虑不确定因素及盲点会让人感觉不爽,但回报显著。
原始数据
要保存原始数据,并习惯拿处理后的数据和原始数据进行比较
在密集的数据中兜圈子很容易让人“迷路”,要是你迷失了目标,忘记了假设,只要集中注意力完成该完成的数据处理就能扭转局势,优秀的数据分析的根本在于密切关注需要了解的数据。
为一个化妆品公司分析数据,发现广告投入减少,社交网络营销投入增加,但是销量却没有达到预期,即时降价也没能影响销量。给出的建议是重新提高广告投入,看看是否有效果。 后来看到一则新闻,得知该品牌的该产品在少女消费者群体中已接近饱和,增加广告投入没有太大价值。收集更多数据,重新分析后发现新的消费群体,老年男子用该产品做剃须后保养。给出的建议是推出针对老年男子须后保养的产品并推广。
中间经历了【心智模型转变】->【查看不确定范围】->【重新收集信息再分析】
EX: 您希望销量提高多少?您觉得我们怎样才能办到呢?您觉得销量提高多少是可行的?目标销量合理么?竞争对手销量如何?广告和社交网络投入是怎么考虑的?【知道什么】
EX:您对我们的目标客户了解么?目标客户唯一么?销售渠道如何?【不知道什么】
在分析过程中得到了一些错误的、不完整的信息,导致你给出的建议不符合实际。
数据分析是为了更好地决策:开始你需要明确你要解决的问题,最后要给出你的专业建议
所有的数据分析师最终都会被打造成能做出更好决策的人才,你要学的就是在浩如烟海的数据中洞察先机,作出更好决策。
总结
1. 分析之前要明确问题和范围,要找你的客户参与进来
2. 分析最重要的是分解,分解问题也分解数据,
3. 评估最重要的是比较,找到最有价值的比较
4. 评估的过程,你开始把自己已有的知识加入到其中,堵上自己的信誉
5. 分析之后一定要给决策,不要只是呈现一些结论
6. 觉察你的心智模型,因为它会对你的分析过程形成深刻影响
7. 时刻反思有哪些你默认的前提假设其实是未知或不确定的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26