京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘、数据分析与数据统计有什么区别
简单说:数据挖掘就是从海量数据中找到隐藏的规则,数据分析一般要分析的目标比较明确,数据统计则是单纯的使用样本来推断总体。
主要区别: “数据分析”的重点是观察数据,“数据挖掘”的重点是从数据中发现“知识规则”KDD(Knowledge Discover in Database),数据统计的重点是参数估计和假设检验。 “数据分析、数据统计”得出的结论是人的智力活动结果,“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。
“数据分析”需要人工建模,“数据挖掘”自动完成数学建模,“数据统计”则是把模糊估计变得准确而定量。可以通过机器学习自动建立输入与输出的函数关系,根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。
举个简单的例子:有一些人总是不及时向电信运营商缴费,如何发现它们?
数据分析:通过对附近人口的生活习惯、业余爱好、教育背景、收入分布、家庭组成等进行全方面分析,发现很多人都习惯在收到欠费通知以后再缴费。结论就是提前发放短信提醒。
数据挖掘:通过编写机器学习聚类算法发现无法通过观察图表得出的深层次原因。发现家住在五环以外的人,由于居住环境偏远没有时间上营业厅缴费。结论就需要多设立一些营业厅或者自助缴费点。
数据统计:通过统计学推理方法组成样本的试验单元进行参数估计和假设检验,我们发现不及时缴钱人群里的贫困人口占82%。所以结论是收入低的人往往会缴费不及时。结论就需要降低资费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27